• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

长壁逐巷胶结充填巷道复合承载体支护研究

姚依南, 董超伟, 赖万安, 郭亚奔, 钟磊

姚依南, 董超伟, 赖万安, 郭亚奔, 钟磊. 长壁逐巷胶结充填巷道复合承载体支护研究[J]. 煤矿安全, 2021, 52(11): 195-204.
引用本文: 姚依南, 董超伟, 赖万安, 郭亚奔, 钟磊. 长壁逐巷胶结充填巷道复合承载体支护研究[J]. 煤矿安全, 2021, 52(11): 195-204.
YAO Yinan, DONG Chaowei, LAI Wan’an, GUO Yaben, ZHONG Lei. Research on support of composite bearing body in longwall-roadway cemented backfilling[J]. Safety in Coal Mines, 2021, 52(11): 195-204.
Citation: YAO Yinan, DONG Chaowei, LAI Wan’an, GUO Yaben, ZHONG Lei. Research on support of composite bearing body in longwall-roadway cemented backfilling[J]. Safety in Coal Mines, 2021, 52(11): 195-204.

长壁逐巷胶结充填巷道复合承载体支护研究

Research on support of composite bearing body in longwall-roadway cemented backfilling

  • 摘要: 长壁逐巷胶结充填开采过程中充填巷道的支护效率极大地影响了掘巷速度,为了简化回采过程中充填巷道两侧处于煤体-煤体、充填体-煤体、充填体-充填体围岩动态组合时的支护,通过数值模拟得出单个开采循环内煤体和充填体的应力演化规律,针对充填巷道周围煤与充填体的不同复合承载特点,设计了3种支护方案,并分析了支护效果。结果表明,单个开采循环内的不同阶段煤体都为复合承载体系中的主要承载部分,其垂直应力最大可达34.4 MPa,应力集中系数为2.33;充填体垂直应力变化范围约为0.5~2.13 MPa,变化幅度小;在掘进过程中减少对充填体侧的支护时,处于3种状态的充填巷道断面收缩率分别为2.84%、4.38%、13.33%,即单个开采循环中存在煤体-充填体复合承载时减少支护对巷道变形影响较小。
    Abstract: The supporting efficiency of the filling roadway during longwall-roadway cemented backfilling process greatly affects the speed of roadway driving. In order to simplify the support during the mining process when both sides of the filling roadway are in the dynamic combination of coal body-coal body, filler-coal body, and filler-filler surrounding rock, this paper uses numerical simulation to obtain the stress evolution law of the coal and the backfill in a single mining cycle. According to the different composite bearing characteristics of the coal and the filling body around the filling roadway, three supporting schemes are designed and the supporting effect is analyzed. It is found that at different stages of a single mining cycle, the coal body is the main bearing part of the composite load-bearing system, with the maximum vertical stress of 34.4 MPa and the stress concentration coefficient of 2.33. The vertical stress range of the filler is about 0.5 MPa to 2.13 MPa, and the change range is small. In the process of tunneling, when the support on the side of the filling body is reduced, the section shrinkage rate of the filling roadway in the three states is 2.84%, 4.38% and 13.33%, respectively. In other words, the reduced support has little influence on the roadway deformation when the coal-filling body compound bearing capacity exists in a single mining cycle.
  • [1] 谢和平,王金华,申宝宏,等.煤炭开采新理念——科学开采与科学产能[J].煤炭学报,2012,37(7):1069.

    XIE Heping, WANG Jinhua, SHENG Baohong, et al. New idea of coal mining: scientific mining and sustainable mining capacity[J]. Journal of China Coal Society, 2012, 37(7): 1069-1079.

    [2] 康红普,徐刚,王彪谋,等.我国煤炭开采与岩层控制技术发展40 a及展望[J].采矿与岩层控制工程学报,2019,1(2):7-39.

    KANG Hongpu, XU Gang, WANG Biaomou, et al. Forty years development and prospects of underground coal mining and strata control technologies in China[J]. Journal of Mining and Strata Control Engineering, 2019, 1(2): 7-39.

    [3] 宋光远,周华强.膏体充填回收条带煤柱覆岩活化规律研究[J].煤矿安全,2019,50(2):228-231.

    SONG Guangyuan, ZHOU Huaqiang. Study on activation laws of overlying strata during strip coal pillar recovery by paste backfill[J]. Safety in Coal Mines, 2019, 50(2): 228-231.

    [4] 邓雪杰.特厚煤层上向分层长壁逐巷胶结充填开采覆岩移动控制机理研究[D].徐州:中国矿业大学,2017.

    DENG Xuejie. Ground control mechanism of mining extra-thick coal seam using upward slicing long wall-roadway cemented backfilling technology[D]. Xuzhou: China University of Mining and Technology, 2017.

    [5] 孙凯,曹鑫,武中亚,等.长壁逐巷胶结充填采充工艺协调优化设计方法[J].矿业研究与开发,2019,39(6):11-16.

    SUN Kai, CAO Xin, WU Zhongya, et al. A design method for coordinated optimization for mining and filling process of longwall-roadway with cemented backfilling technology[J]. Mining Research and Development, 2019, 39(6): 11-16.

    [6] 郭广礼,郭凯凯,张国建,等.深部带状充填开采复合承载体变形特征研究[J].采矿与安全工程学报,2020, 37(1):101-109.

    GUO Guangli, GUO Kaikai, ZHANG Guojian, et al. Research on deformation characteristics of coupled coal-backfills bearing in deep strip backfilling mining[J]. Journal of Mining & Safety Engineering, 2020, 37(1): 101-109.

    [7] 马超,茅献彪,李强,等.煤柱与充填体耦合作用力学机理研究[J].煤矿安全,2011,42(10):8-11.

    MA Chao, MAO Xianbiao, LI Qiang, et al. The mechanics research of coal pillar and backfill coupling function[J]. Safety in Coal Mines, 2011, 42(10): 8.

    [8] Xiaojun Zhu, Guangli Guo, Hui Liu,et al. Research on the stability evaluation model of composite support pillar in backfill-strip mining[J]. Mathematical Problems in Engineering, 2020(11): 3138258.
    [9] 王永杰,颜丙双.分阶段充填开采应力演化与地表减沉效果研究[J].煤矿安全,2020,51(5):208-214.

    WANG Yongjie, YAN Bingshuang. Study on stress evolution and surface subsidence of phased filling and mining technology[J]. Safety in Coal Mines, 2020, 51(5): 208-214.

    [10] 李石林,冯涛,朱卓慧.“煤体-支柱(架)-胶结体”联合作用下顶板超静定梁模型[J].煤炭学报,2013,38(10):1735-1741.

    Ll Shilin, FENG Tao, ZHU Zhuohui. Mechanical model of statically indeterminate beam of roof under the combined action of coal body, pillar (support) and cemented fill[J]. Journal of China Coal Society, 2013, 38(10): 1735-1741.

    [11] 余伟健,冯涛,王卫军,等.充填开采的协作支撑系统及其力学特征[J].岩石力学与工程学报,2012,31(S1):2803-2813.

    YU Weijian, FENG Tao, WANG Weijun, et al. Coordination support systems in mining with filling and mechanical behavior[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1): 2803-2813.

    [12] 李岗.深井超高水充填工作面充填体与煤柱协同承载机理研究[D].徐州:中国矿业大学,2019.

    LI Gang. Backfilling and coal pillar coordination support mechanism of super-high-water filling working face with deep mining depth[D]. Xuzhou:China University of Mining and Technology, 2019.

    [13] 陈绍杰,郭惟嘉,周辉,等.条带煤柱膏体充填开采覆岩结构模型及运动规律[J].煤炭学报,2011,36(7):1081-1086.

    CHEN Shaojie, GUO Weijia, ZHOU Hui, et al. Structure model and movement law of overburden during strip pillar mining backfill with cream-body[J]. Journal of China Coal Society, 2011, 36(7): 1081-1086.

    [14] 谢生荣,岳帅帅,陈冬冬,等.深部充填开采留巷围岩偏应力演化规律与控制[J].煤炭学报,2018,43(7):1837-1846.

    XIE Shengrong, YUE Shuaishuai, CHEN Dongdong, et al. Deviatoric stress evolution laws and control of surrounding rock at gob-side entry retaining in deep backfilling mining[J]. Journal of China Coal Society, 2018, 43(7): 1837-1846.

    [15] 陈绍杰,尹大伟,胡炳南,等.条带充填坚硬顶板与充填体组合系统力学特性试验研究[J].采矿与安全工程学报,2020,37(1):110-117.

    CHEN Shaojie, YIN Dawei, HU Bingnan, et al. Study on mechanical characteristics of composite system of hard roof and filling body under strip filling[J]. Journal of Mining & Safety Engineering, 2020, 37(1): 110-117.

    [16] T Kostecki, A J S Spearing. Influence of backfill on coal pillar strength and floor bearing capacity in weak floor conditions in the Illinois Basin[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 76: 55-67.
    [17] 唐维军,孙希奎,王恒,等.膏体充填开采条带煤柱覆岩稳定效应研究[J].煤炭科学技术,2017,45(9):109-115.

    TANG Weijun, SUN Xikui, WANG Heng, et al. Study on effect of overlying strata stability during strip coal pillar excavation with paste backfilling[J]. Coal Science and Technology, 2017, 45(9): 109-115.

    [18] 郭惟嘉,江宁,王海龙,等.膏体置换煤柱充填体承载特性及工作面支护强度研究[J].采矿与安全工程学报,2016,33(4):585-591.

    GUO Weijia, JIANG Ning, WANG Hailong, et al. Bearing characteristics of filling body and supporting intensity of working face during coal pillar mined with paste backfill[J]. Journal of Mining & Safety Engineering, 2016, 33(4): 585-591.

    [19] 陈正拜,李永亮,杨仁树,等.窄煤柱巷道非均匀变形机理及支护技术[J].煤炭学报,2018,43(7):1847.

    CHEN Zhengbai, LI Yongliang, YANG Renshu, et al. Non-uniform deformation mechanism and support technology of narrow coal pillar roadway[J]. Journal of China Coal Society, 2018, 43(7): 1847-1857.

    [20] 邓雪杰,董超伟,袁宗萱,等.深部充填沿空留巷巷旁支护体变形特征研究[J].采矿与安全工程学报,2020, 37(1):62-72.

    DENG Xuejie, DONG Chaowei, YUAN Zongxuan, et al. Deformation behavior of gob-side filling body of gob-side retaining entry in the deep backfilling workface[J]. Journal of Mining & Safety Engineering, 2020, 37(1): 62-72.

    [21] 常庆粮,周华强,柏建彪,等.膏体充填开采覆岩稳定性研究与实践[J].采矿与安全工程学报,2011,28(2):279-282.

    CHANG Qingliang, ZHOU Huaqiang, BAI Jianbiao, et al. Stability study and practice of overlying strata with paste backfilling[J]. Journal of Mining & Safety Engineering, 2011, 28(2): 279-282.

  • 期刊类型引用(15)

    1. 张铎,孙伟,郭曦蔓,岑孝鑫,代爱萍. 煤制油气化灰渣防灭火凝胶的制备及性能. 材料导报. 2024(03): 255-261 . 百度学术
    2. 姜小龙,孙明,常建平,董红娟. 矿井煤自燃防灭火材料阻燃机理综述. 内蒙古科技大学学报. 2024(03): 226-229 . 百度学术
    3. 李洋,戴广龙,杨苗苗. 高保水矿用凝胶阻化材料的制备和性能研究. 煤炭技术. 2023(03): 173-177 . 百度学术
    4. 段西凯,周睿,何勇军. 矿用超吸水防灭火凝胶制备及性能研究. 煤矿安全. 2023(02): 71-76 . 本站查看
    5. 谢军,卞兆庆,解恒星,王怡,王法铨. 基于CiteSpace的矿用凝胶研究趋势分析. 煤矿安全. 2023(02): 54-60 . 本站查看
    6. 王海军,吴艳,马良,陈崇枫,孙保平,王相业,吴敏杰,刘善德. 陕北浅埋煤层一体化漏风通道探查技术. 煤矿安全. 2023(04): 83-90 . 本站查看
    7. 陈鹏燕,周春山,程熙宇. CMC/AlCit/GDL防灭火凝胶的流变性能及本构方程研究. 应用化工. 2023(04): 1010-1014 . 百度学术
    8. 唐金召,范利丹,张纪云,徐峰,余雳伟,杨杰,赵伟. 我国煤矿巷道锚杆支护理论及技术研究进展. 煤矿安全. 2023(06): 131-143 . 本站查看
    9. 王毅泽,董凯丽,张玉龙,董智宇,王俊峰. CMC/ZrCit/GDL防灭火凝胶泡沫的制备及特性研究. 煤炭科学技术. 2023(06): 122-129 . 百度学术
    10. 陈鹏燕,周春山. 矿用双网络凝胶防灭火特性研究. 煤矿安全. 2023(11): 84-91 . 本站查看
    11. 杨苗苗,戴广龙. 矿用煤自燃防治高吸水高保水性水凝胶的制备及性能研究. 煤矿安全. 2022(02): 40-45 . 本站查看
    12. 卜祝龙,张铎,吕英英,王慧,王泓皓,杨娟娟. 煤渣填充防火凝胶配比实验研究. 粘接. 2022(01): 12-18 . 百度学术
    13. 韩福志,邵和,司俊鸿,张俊. 矿用堵漏无机触变防灭火凝胶的流变特性研究. 矿业安全与环保. 2022(01): 1-7 . 百度学术
    14. 刘东. 基于程序升温实验的煤低温氧化特性数值模拟研究. 煤矿安全. 2022(05): 40-45 . 本站查看
    15. 秦存利,刘袁昊,李军. 新型高分子材料防灭火技术研究与安全评估. 山东煤炭科技. 2021(10): 212-215+218+225 . 百度学术

    其他类型引用(10)

计量
  • 文章访问数:  44
  • HTML全文浏览量:  0
  • PDF下载量:  10
  • 被引次数: 25
出版历程
  • 发布日期:  2021-11-19

目录

    /

    返回文章
    返回