• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

我国煤矿巷道锚杆支护理论及技术研究进展

唐金召, 范利丹, 张纪云, 徐峰, 余雳伟, 杨杰, 赵伟

唐金召, 范利丹, 张纪云, 徐峰, 余雳伟, 杨杰, 赵伟. 我国煤矿巷道锚杆支护理论及技术研究进展[J]. 煤矿安全, 2023, 54(6): 131-143.
引用本文: 唐金召, 范利丹, 张纪云, 徐峰, 余雳伟, 杨杰, 赵伟. 我国煤矿巷道锚杆支护理论及技术研究进展[J]. 煤矿安全, 2023, 54(6): 131-143.
TANG Jinzhao, FAN Lidan, ZHANG Jiyun, XU Feng, YU Liwei, YANG Jie, ZHAO Wei. Research progress on bolt support theory and technology of coal mine roadway in China[J]. Safety in Coal Mines, 2023, 54(6): 131-143.
Citation: TANG Jinzhao, FAN Lidan, ZHANG Jiyun, XU Feng, YU Liwei, YANG Jie, ZHAO Wei. Research progress on bolt support theory and technology of coal mine roadway in China[J]. Safety in Coal Mines, 2023, 54(6): 131-143.

我国煤矿巷道锚杆支护理论及技术研究进展

Research progress on bolt support theory and technology of coal mine roadway in China

  • 摘要: 随着我国巷道埋深的不断增加以及矿井环境的复杂化,巷道锚杆支护面临的挑战将更加严峻。基于相关文献的调研,对巷道锚杆支护相关理论进行了系统的总结,重点论述了近些年新提出的锚杆中性点理论、锚杆支护围岩强度强化理论、锚杆等强梁支护理论等;同时从锚固体应力分布规律、锚杆荷载传递规律、锚杆锚固界面力学特性、围岩的流变性及其产生的时效性等4个方面对锚杆作用机理进行了阐述;介绍了锚杆支护形式、锚杆设计方法、锚杆材料及结构等方面的主要研究成果。最后,结合巷道锚杆支护领域的研究现状,探讨了巷道锚杆支护中亟需解决的难题及研究重点。
    Abstract: With the increasing depth of roadway and the complexity of mine environment in China, the challenge of roadway bolt support will be more serious. Based on the investigation of relevant literature, the related theories of roadway bolt support were systematically summarized, and the newly proposed bolt neutral point theory, surrounding rock strength strengthening theory of bolt supporting, theory of bolt uniform strength beam support in recent years were emphatically discussed; at the same time, the action mechanism of anchor is expounded from the following four aspects: the stress distribution law of anchorage body, the load transfer law of anchor bolt, the mechanical properties of anchor anchorage interface, the rheological property of surrounding rock and its timeliness; then the main research results of bolt support form, bolt design method, bolt material and structure are introduced.Finally, combined with the research status of roadway bolt support, the problems and research priorities that need to be solved in roadway bolt support are discussed.
  • 支护对于煤矿安全高效开采有着决定性作用[1-3],随着支护理论、技术及材料科学研究的进步,巷道支护逐渐由原来的被动支护[4-5]为主,逐步向着主被动相结合的支护方式发展。现如今锚杆锚索一体化协同支护已成为巷道主动支护设计的主要技术手段[6-8],这在一定程度上缓解了巷道的围岩变形[9-10]

    针对巷道支护,设计众多学者进行了大量研究。富强[11]通过引入矿压数据作为模型判断条件,提出了基于实测矿压数据为因变量的数值计算反演分析方法;刘海雁等[12]研究了顶角锚杆安装角度、锚杆的长度和锚杆预紧力对巷道稳定性的权重因素大小,提出了基于正交矩阵的巷道分析方法;郑朋强等[13]采用等效圆法计算出顶板及两帮的松动圈范围,提出将阳城三采区3310巷道顶板锚杆换成锚索的支护方案;杨秀章等[14]针对软岩巷道采用FLAC3D数值模拟对巷道进行精细化模拟从而选择最优支护方案;戴晨[15]通过现场观测围岩变形、钻孔窥视、瑞利波探测等手段对巷道进行支护设计;王羽阳等[16]采用层次分析法针对软弱岩层巷道围岩提出2种工程类比支护方案。

    上述学者提出多种方法针对巷道支护设计进行了研究,但缺少对深部煤层回采巷道支护的研究。为此,以唐阳煤矿432运输巷为工程背景,对432运输巷支护方案进行研究,从安全、高效、节约的角度,基于巷道围岩控制理论,运用理论计算、数值模拟、工程试验的方法,提出深部厚煤层回采巷道支护设计方案[17-20]

    唐阳煤矿地处济宁市汶上县南站镇,矿井核定生产能力为110万t/a,共含可采煤层3层,自上而下分别为3#、16#、17#煤层;3#煤为主采煤层,发育良好,平均煤厚5.24 m,为厚煤层,属较稳定−稳定煤层,煤层倾角一般在6°~18°。煤矿采用立井开拓,主副井分别兼作回风井和进风井,通风方式为中央并列抽出式,采煤工艺为长壁后退式,综采放顶煤采煤工艺。

    432综放工作面为唐阳煤矿四采区第2个回采工作面,设计开采3#煤层,埋深481.5~614.9 m,西北方向为431采空区。432运输巷沿煤层底板全煤掘进,掘进期间揭露XDF5断层,工作面巷道布置平面图如图1所示。432运输巷支护断面为矩形断面,巷道掘进高度×掘进宽度为3.1 m×4.8 m,巷道断面净面积为13.8 m2。432运输巷顶底板岩性钻孔柱状图如图2所示。

    图  1  432工作面巷道平面布置图
    Figure  1.  Roadway layout diagram of 432 working face
    图  2  岩性钻孔柱状图
    Figure  2.  Lithologic borehole column diagram

    根据巷道围岩控制理论结合432运输巷工程实际情况,初步提出以锚杆(索)+网+W钢带为基础的3种支护方案,3种支护方案断面如图3所示。3种支护方案均采用细牙等强螺纹钢式树脂锚杆;锚索采用ϕ21.8 mm×6 000 mm的矿用锚索;顶帮部挂网均采用ϕ4.5 mm钢筋加工的冷拔筋经纬网,规格为长×宽=2 400 mm×900 mm,网格规格为长×宽=80 mm×80 mm;W钢带呈矩形采用长×宽=4 400/2 000 mm×300 mm。具体支护方案参数见表1

    图  3  巷道支护方案断面图
    Figure  3.  Section diagrams of roadway support schemes
    表  1  支护方案参数表
    Table  1.  Parameters of supporting schemes
    方案 顶板锚杆
    数量
    帮部锚杆
    数量
    锚索
    数量
    锚杆间排距/
    (mm×mm)
    锚索间排距/
    (mm×mm)
    方案Ⅰ 6 4 3 800×800 1 600×1 600
    方案Ⅱ 5 4 3 1 000×1 000 1 600×1 800
    方案Ⅲ 4 4 3 1 200×1 200 1 600×2 000
    下载: 导出CSV 
    | 显示表格

    为研究支护方案锚杆锚索取值参数是否合理,采用悬吊理论对432运输巷进行支护理论分析。432运输巷道支护设备选用参数如下:锚杆材质为等强螺纹钢,屈服强度标准值为500 MPa,杆体设计抗拉强度为670 MPa,设计锚固力190 kN,设计预紧力80 kN;锚索由低松弛预应力钢绞线制作,设计抗拉强度1 860 MPa,最大破断力580 kN,设计锚固力190 kN,预紧力120 kN。

    根据唐阳煤矿432运输巷实际支护参数,运用式(1)对巷道围岩顶板和锚杆长度进行理论计算:

    $$ \mathit{L} _{ \rm{m} } \mathit{=L} _{ \mathrm{1}} \mathit{+L} _{ \mathrm{2}} \mathit{+L} _{ \mathrm{3}} $$ (1)

    式中:Lm为锚杆总长度,m;L1为锚杆外露长度,m;L2锚杆有效长度,m;L3锚杆锚入稳定岩层的深度,m。

    根据式(1)可知,锚杆长度的计算由3部分组成,其中L1=托板厚+螺母厚+(0.02~0.03 m),根据锚杆实际参数,锚杆外露长度均取0.1 m。此外,对于锚杆有效长度L2,采用普式自然平衡拱进行锚杆有效长度的理论计算,计算过程如下:

    f ≥3时:

    $$ {L_2} = K\frac{B}{{2f}} $$ (2)

    f ≤ 2时:

    $$ {L_2} = \frac{1}{f}\left[ {\frac{B}{2} + H{\mathrm{cot}}\left( {45^\circ + \frac{\omega }{2}} \right)} \right] $$ (3)

    式中:K为安全系数;B为巷道掘进宽度,m;H为巷道掘进高度,m;ω为两帮围岩的似内摩擦角,(°);f为普氏岩石坚固性系数。

    根据432运输巷工程实际参数,运用式(2)、式(3)对顶板锚杆长度进行计算。为保证巷道顶板的支护安全,式中安全系数K取最大值2,L3也取最大值0.5 m,ω取42°。将数据代入计算得:当f ≥ 3时,L2=1.6 m,Lm≥2.2 m;当f ≤ 2时,L2=1.28 m,Lm≥1.88 m。

    对于帮部锚杆有效长度的计算,可采用帮破碎深度c来计算:

    $$ c = H\tan \left( {45^\circ - \frac{\omega }{2}} \right) $$ (4)

    将数据代入计算得:c=1.38 m,则帮部锚杆的有效长度L2为1.38 m。将计算结果代入式(1)则帮部锚杆的长度Lm为1.98 m。

    锚杆间排距可通过式(5)计算得出:

    $$ a < \sqrt {\frac{G}{{k{L_2}{\text{r}}}}} $$ (5)

    式中:a为锚杆间排距,m;G为锚杆设计锚固力,kN;r为不稳定岩层平均重力密度,取13.5 kN/m3

    将数据代入式(5),计算得a<2.10 m。

    锚索长度可由式(6)计算。

    $$ \mathit{L} _{ \mathrm{s}} \mathrm= \mathit{L} _{ \mathrm{a}} \mathrm+ \mathit{L} _{ \mathrm{b}} \mathrm+ \mathit{L} _{ \mathrm{c}} $$ (6)

    式中:Ls为锚索总长度,m;La为锚索外露长度,m;Lb为悬吊的不稳定岩层厚度,m;Lc锚索锚入较稳定岩层的锚固长度,m。

    其中Lc满足以下公式:

    $$ L_{{\mathrm{c}}} \geqslant K \times \frac{d_{1} f_{{\mathrm{a}}}}{4 f_{{\mathrm{c}}}} $$ (7)

    式中:d1锚索直径,mm;fa为锚索抗拉强度,MPa;fc为锚索与锚固剂的黏合强度,10 N/mm2

    根据矿井实际支护参数,锚索外露长度La取值为0.3 m,Lb取顶煤厚度3 m,Lc通过式(7)计算得Lc≥1.52 m。将上述参数取值及计算结果代入式(6),计算得出锚索长度Ls≥5 m。

    锚索间排距可通过式(8)计算得出:

    $$ b = \frac{{N{F_2}}}{{B{{h}}\rho g }} $$ (8)

    式中:b为锚索间排距,m;B为掘进巷道宽度,m;h为巷道垮落高度,m;ρ为岩体平均密度,取2.5 t/m3F2为锚索极限承载力,根据实际生产中锚索支护效率,取最小值250 kN;N为锚索根数,分别取1、2、3。

    由式(8)可以看出,锚索间排距b与巷道最大垮落高度h成反比关系,为使锚索排距更加可靠,h应尽可能取值大一些,因此选取唐阳煤矿顶板锚杆长度作为垮落高度的参考值。将数据代入公式,计算锚索间排距,锚索间排距参数见表2

    表  2  锚索间排距参数表
    Table  2.  Parameters table of row spacing between anchor cables
    锚索根数最大垮落高度/m巷道宽度/m锚索间排距/m
    12.24.80.947
    22.24.81.893
    32.24.82.841
    下载: 导出CSV 
    | 显示表格

    根据理论计算,唐阳煤矿432运输巷支护方案及锚杆锚索等支护参数的选取均符合理论计算。

    根据唐阳煤矿432运输巷地质资料建立巷道FLAC3D数值模型,模型中岩性参数的选取值见表3,数值模拟图如图4所示。

    表  3  模型物理力学参数表
    Table  3.  Model physical and mechanical parameters table
    岩石
    名称
    密度/
    (kg.m−3)
    体积模
    量/GPa
    剪切模
    量/GPa
    黏聚力/
    MPa
    内摩擦
    角/(°)
    抗拉强
    度/MPa
    中粒砂岩 2 640 14.70 8.10 6.11 38.97 5.500
    砂质泥岩 2 500 4.17 2.50 4.86 30.00 2.600
    3 1 832 1.25 1.30 1.50 35.00 2.170
    泥岩 2 360 2.17 1.00 4.86 28.00 2.372
    细粒砂岩 2 700 7.87 3.38 5.01 38.80 5.792
    下载: 导出CSV 
    | 显示表格
    图  4  432运输巷数值模拟图
    Figure  4.  Numerical simulation diagram of 432 haulage roadway

    依据巷道断面尺寸建立长×宽×高为30 m×20 m×30 m的数值模型,为精确模拟结果对模型网格单元进行加密处理,共划分模型网格单元1 075 200个,模型力学准则选用摩尔−库伦准则。模型建立后对模型水平边界施加水平方向位移约束,下边界施加垂直方向位移约束,上边界施加垂直方向应力约束,应力大小为模型上覆岩石自重,模型中锚杆(索)支护结构采用CABLE单元模拟。

    巷道开挖后,由于采掘活动破坏了巷道围岩原始的应力环境,会导致巷道围岩应力环境的重新分布,巷道围岩应力重新分布的过程中,通过巷道的围岩变形加以显现。巷道围岩变形量是判断巷道围岩的稳定性重要指标。432运输巷垂直位移等值线如图5所示。

    图  5  不同支护方案巷道围岩垂直位移等值线图
    Figure  5.  Vertical displacement isograms of roadway surrounding rock under different support schemes

    图5可以看出,3种支护方案的垂直位移量有着明显区别:支护方案Ⅰ顶板垂直位移量约为62.4 mm,顶底板相对位移量约为77.6 mm;支护方案Ⅱ顶板垂直位移量约为63.9 mm,顶底板相对位移量约为79.7 mm;支护方案Ⅲ顶板垂直位移量约为68.3 mm,顶底板相对位移量83.8 mm。

    为进一步精确模拟结果,在数值模型巷道顶板及帮部布置5 m的测线,巷道上方5 m范围内的位移数据如图6所示。

    图  6  顶板不同位置位移量变化
    Figure  6.  Displacement changes at different positions of roof

    图6可知:在巷道顶板上方5 m范围内支护方案Ⅲ的位移变形量最大,支护方案Ⅰ与支护方案Ⅱ位移变形量相近。

    巷道围岩水平方向的位移变形会引起巷道两帮内敛收缩,若变形量较大则会导致片帮,影响巷道支护及通风。不同支护方案水平位移等值线图如图7所示,巷道两帮5 m范围内的水平位移变化曲线如图8所示。

    图  7  不同支护方案巷道围岩水平位移等值线图
    Figure  7.  Horizontal displacement contour map of roadway surrounding rock under different support schemes
    图  8  两帮不同位置位移量变化图
    Figure  8.  Displacement variation diagrams of different positions of roadway two sides

    图7可知:支护方案Ⅰ左帮水平位移变形量约为51.7 mm,右帮水平位移变形量约为51.7 mm,两帮相对位移变形量约为103.4 mm;支护方案Ⅱ左帮水平位移变形量约为52.8 mm,右帮水平位移变形量约为52.7 mm,两帮相对位移变形量约为105.5 mm;支护方案Ⅲ左帮水平位移变形量约为55.2 mm,右帮水平位移变形量约为55.9 mm,两帮相对位移变形量约为111.1 mm。

    图8可知:支护方案Ⅰ与支护方案Ⅱ的两帮位移变形量均小于支护方案Ⅲ的位移量,且支护方案Ⅰ与支护方案Ⅱ位移量相近。

    432运输巷3种支护方案塑性区演化如图9所示。

    图  9  不同支护方案塑性区演化数值模拟
    Figure  9.  Numerical simulation of plastic zone evolution for different support schemes

    图9可知:各支护方案塑性破坏均发生在顶板3 m范围及两帮1.5 m范围内;在顶板区域支护方案Ⅰ和方案Ⅲ塑性破坏单元较多且分布均匀,支护方案Ⅱ顶板破坏单元较少但分布零散;在巷道两帮靠近顶板区域,支护方案Ⅲ塑性破坏单元最多;在底板附近,支护方案Ⅲ塑性破坏单元较支护方案Ⅰ及方案Ⅱ明显较多。模拟结果显示支护方案Ⅰ与支护方案Ⅱ明显优于支护方案Ⅲ。

    由数值模拟可得,3种支护方案对432运输巷道围岩控制均起到良好的效果,但不同的支护参数致使支护成本有很大不同。不同支护方案支护效果及成本分析见表4

    表  4  不同支护方案支护效果及成本分析表
    Table  4.  Support effect and cost analysis table of different support schemes
    名称 顶底板相对
    位移量/mm
    两帮相对
    位移量/mm
    支护成本/
    (元·m−1
    支护方案Ⅰ 77.6 103.4 1 024
    支护方案Ⅱ 79.7 105.5 663
    支护方案Ⅲ 83.8 111.1 461
    下载: 导出CSV 
    | 显示表格

    由表4可知:支护方案Ⅰ和支护方案Ⅱ在支护效果相近的情况下,支护方案Ⅱ比支护方案Ⅰ减少35%成本。

    由分析可以看出,432运输巷的支护不能仅凭盲目增加锚杆,加密间排距进行设计来解决支护效果和成本所带来的问题。根据模拟结果及成本分析,选择支护方案Ⅱ作为432运输巷基本支护方案。

    为了验证支护方案Ⅱ对432运输巷道支护方案效果,采用多点位移计分别对巷道顶板及两帮位移量进行监测。在432运输巷开门口处布置1#测站,距1#测站100 m处布置2#测站,共布置2组测站。

    顶板位移计布置在巷道中部垂直顶板,5个测点分别位于孔深2、4、6、8、10 m,432运输巷1#、2#顶板多点位移计安装示意图如图10所示。巷道帮部位移计布置在巷道回采侧煤壁中部,垂直于煤壁,测点安装孔深分别为1、2、3、4、5 m,432运输巷1#、2#帮部多点位移计安装示意图如图11所示。1#、2#测站监测的顶板、巷帮位移增量变化曲线如图12图13所示。

    图  10  432运输巷1#、2#顶板多点位移计安装示意图
    Figure  10.  Installation diagram of 1#, 2# roof multi-point displacement meters in 432 transportation lane
    图  11  432运输巷1#、2#帮部多点位移计安装示意图
    Figure  11.  Installation diagram of 1#, 2# side multi-point displacement meters in 432 transportation lane

    图12可以看出:432运输巷道1#和2#测站顶板2 m基点位移都为0,说明巷道顶板锚固支护范围内无明显离层出现;4 m基点、6 m基点、8 m基点处的观测位移值分别为6、4、7 mm(1#测站)和5、3、6 mm(2#测站)。根据432运输巷地质资料分析,该3处基点位于煤层上方砂质泥岩层位中,砂质泥岩岩性较弱,相对于砂岩强度较低,因此该3处的位移量较大。10 m基点位于煤层上方基本顶中粒砂岩中,1#测站位移观测值为3 mm,2#测站观测值为4 mm,由于中粒砂岩岩性较好,强度较高,因此10 m基点位移量小于砂质泥岩中基点位移量。

    图  12  432运输巷1#、2#顶板监测位移变化曲线
    Figure  12.  Roof monitoring displacement chang curves of 1#, 2# measuring points in 432 transportation lane
    图  13  432运输巷1#、2#巷帮监测位移变化曲线
    Figure  13.  Two sides monitoring displacement change curves of 1#, 2# measuring points in 432 transportation lane

    图13可知:1#测站和2#测站在1 m基点处的位移值都为0,表明巷道支护对于巷道帮部围岩变形起到良好的控制作用;随着观测时间推移巷道帮部位移在25 d达到最大,之后不再增加,表明支护方案Ⅱ方案支护起到了有效的支护作用。

    432运输巷顶底板及两帮累计位移量现场监测数据如图14所示,通过对比数值模拟数据,两者数值极为相近,从而验证了数值模拟的可靠性。

    图  14  巷道顶底板及两帮累计位移变形量
    Figure  14.  Cumulative displacement and deformation of roof and floor and two sides of roadway

    1)针对唐阳煤矿432运输巷支护设计,提出3种支护设计方案,通过理论计算,选取了合理的支护参数;运用数值模拟,研究了3种支护方案的位移、塑性区。支护方案Ⅰ和支护方案Ⅱ顶底板位移变形量相近,但支护方案Ⅱ塑性单元最少。支护方案Ⅲ支护效果最差。

    2)基于支护效果和成本考虑对比3种支护方案。支护方案Ⅰ与支护方案Ⅱ在顶板及两帮位移量上的控制效果相近,支护方案Ⅲ的围岩控制效果较差。在支护效果相近的条件下,支护方案Ⅱ的成本仅占支护方案Ⅰ的64.7%。

    3)工程试验表明,通过设置在巷道的2个测站的多点位移计监测可以看出,支护方案Ⅱ对432运输巷近场围岩变形的控制效果很好。两测站位于顶板10 m基点处的位移量表明支护方案Ⅱ对于基本顶的位移变形量控制起到明显的作用。同时,巷道帮部各基点的位移量在第25 d达到最大值。表明支护方案Ⅱ有效地控制了围岩破碎区向围岩深部蔓延。

  • [1] 张平松, 欧元超, 李圣林.我国矿井物探技术及装备的发展现状与思考[J].煤炭科学技术, 2021, 49(7): 1 -15.

    ZHANG Pingsong, OU Yuanchao, LI Shenglin. Development quo-status and thinking of mine geophysical prospecting technology and equipment in China[J]. Coal Science and Technology, 2021, 49(7): 1-15.

    [2] 周若茜, 王宏图, 舒才, 等.采动影响下采空区侧向煤体卸压效应研究[J].煤矿安全, 2021, 52(11): 154-158.

    ZHOU Ruoqian, WANG Hongtu, SHU Cai, et al. Study on pressure relief effect in gob-side coal body under the influence of mining[J]. Safety in Coal Mines, 2021, 52(11): 154-158.

    [3] 孙江, 李雁飞, 杨建, 等.宝日希勒矿区水文地质条件及地下储水可行性研究[J].煤矿安全, 2021, 52(11): 38-43.

    SUN Jiang, LI Yanfei, YANG Jian, et al. Hydrogeological conditions and feasibility study of underground water storage in Baorixile Mining Area[J]. Safety in Coal Mines, 2021, 52(11): 38-43.

    [4] 王俊峰, 董凯丽, 梁择文, 等.矿用防灭火凝胶的制备和特性研究[J].煤矿安全, 2020, 51(10): 126-130.

    WANG Junfeng, DONG Kaili, LIANG Zewen, et al. Study on preparation and characteristics of mine fire extinguishing gel[J]. Safety in Coal Mines, 2020, 51(10): 126-130.

    [5] 谢和平, 吴立新, 郑德志.2025年中国能源消费及煤炭需求预测[J].煤炭学报, 2019, 44(7): 1949-1960.

    XIE Heping, WU Lixin, ZHENG Dezhi. Prediction on the energy consumption and coal demand of China in 2025[J]. Journal of China Coal Society, 2019, 44(7): 1949-1960.

    [6] 王兆会, 孙文超, 水艳婷, 等.千米深井超长工作面采动应力旋转轨迹及其推进方向效应[J].煤炭学报, 2022, 47(2): 634-650.

    WANG Zhaohui, SUN Wenchao, SHUI Yanting, et al. Mining-induced stress rotation trace and its sensitivity to face advance direction in kilometer deep longwall panel with large face length[J]. Journal of China Coal Society, 2022, 47(2): 634-650.

    [7] 康红普.我国煤矿巷道锚杆支护技术发展60年及展望[J].中国矿业大学学报, 2016, 45(6): 1071-1081.

    KANG Hongpu. Sixty years development and prospects of rock bolting technology for underground coal mine roadways in China[J]. Journal of China University of Mining & Technology, 2016, 45(6): 1071-1081.

    [8] ORSON L Anderson, PRISCILLA C Grew. Stress corrosion theory of crack propagation with applications to geophysics[J]. Reviews of Geophysics, 1977, 15(1): 77-104.
    [9] 王博楠.巷道围岩锚杆支护作用的加固拱理论及应用研究[D].西安: 西安科技大学, 2013.
    [10] BURSHTEIN L S. Effect of moisture on the strength and deformability of sandstone[J]. Soviet Mining Science, 1970, 5(5): 573-576.
    [11] 刘泉声, 雷广峰, 彭星新.深部裂隙岩体锚固机制研究进展与思考[J].岩石力学与工程学报, 2016, 35(2): 312-332.

    LIU Quansheng, LEI Guangfeng, PENG Xingxin. Advance and review on the anchoring mechanism in deep fractured rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 312-332.

    [12] FREEMAN T J. The behaviour of fully-bonded rock bolts in the Kielder experimental tunnel[J]. Tunnels and Tunneling, 1978, 10(5): 37-40.
    [13] 王明恕, 何修仁, 郑雨天.全长锚固锚杆的力学模型及其应用[J].金属矿山, 1983(4): 24-29.
    [14] GALE W J. Overview of strata control issues affecting roadway reinforcement and pillar design[J]. The Australian Coal Journal, 1994 (43): 47-53.
    [15] 董方庭, 宋宏伟, 郭志宏, 等.巷道围岩松动圈支护理论[J].煤炭学报, 1994(1): 21-32.

    DONG Fangting, SONG Hongwei, GUO Zhihong, et al. Roadway support theory based on broken rock zone[J]. Journal of China Coal Society, 1994(1): 21-32.

    [16] 林崇德, 赵歌今.困难条件下煤巷锚杆支护技术[J].中国煤炭, 1997(6): 36-38.
    [17] 侯朝炯, 勾攀峰.巷道锚杆支护围岩强度强化机理研究[J].岩石力学与工程学报, 2000, 19(3): 342-345.

    HOU Chaojiong, GOU Panfeng. Mechanism study on strength enhancement for the rocks surrounding roadway supported by bolt[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(3): 342-345.

    [18] 杨新安, 陆士良.软岩巷道锚注支护理论与技术的研究[J].煤炭学报, 1997(1): 34-38.

    YANG Xinan, LU Shiliang. Mechanism and technique of roof boltingand grouting in weak rock tunnels[J]. Journal of China Coal Society, 1997(1): 34-38.

    [19] 杨双锁, 康立勋.煤矿巷道锚杆支护研究的总结与展望[J].太原理工大学学报, 2002(4): 376-381.

    YANG Shuangsuo, KANG Lixun. The status quo and outlook of roadway bolt support theory in coal mines[J]. Journal of Taiyuan University of Technology, 2002(4): 376-381.

    [20] 康红普, 王金华, 林健.高预应力强力支护系统及其在深部巷道中的应用[J].煤炭学报, 2007(12): 1233-1238.

    KANG Hongpu, WANG Jinhua, LIN Jian. High pretensionnned stress and intensive bolting system and its application in deep roadways[J]. Journal of China Coal Society, 2007(12): 1233-1238.

    [21] 黄庆享, 刘玉卫.巷道围岩支护的极限自稳平衡拱理论[J].采矿与安全工程学报, 2014, 31(3): 354-358.

    HUANG Qingxiang, LIU Yuwei. Ultimate self-stable arch theory in roadway support[J]. Journal of Mining & Safety Engineering, 2014, 31(3): 354-358.

    [22] 左建平, 文金浩, 胡顺银, 等.深部煤矿巷道等强梁支护理论模型及模拟研究[J].煤炭学报, 2018, 43(S1): 1-11.

    ZUO Jianping, WEN Jinhao, HU Shunyin, et al. Theoretical model and simulation study of uniform strength beam support in deep coal mine roadway[J]. Journal of China Coal Society, 2018, 43(S1): 1-11.

    [23] 康红普, 王金华, 林健.煤矿巷道支护技术的研究与应用[J].煤炭学报, 2010, 35(11): 1809-1814.

    KANG Hongpu, WANG Jinhua, LIN Jian. Study and applications of roadway support techniques for coal mines[J]. Journal of China Coal Society, 2010, 35(11): 1809-1814.

    [24] 张幼振, 石智军, 张晶.岩石锚杆锚固段荷载分布试验研究[J].岩土力学, 2010, 31(S2): 184-188.

    ZHANG Youzhen, SHI Zhijun, ZHANG Jing. Experi-mental study of load distribution of anchoring section for rock bolts[J]. Rock and Soil Mechanics, 2010, 31(S2): 184-188.

    [25] 尹延春, 赵同彬, 谭云亮, 等.锚固体应力分布演化规律及其影响因素研究[J].采矿与安全工程学报, 2013, 30(5): 712-716.

    YIN Yanchun, ZHAO Tongbin, TAN Yunliang, et al. Research of stress distribution evolution law and influencing factors[J]. Journal of Mining & Safety Engineering, 2013, 30(5): 712-716.

    [26] ZHAO Tongbin, GUO Weiyao, YIN Yanchun, et al. Bolt Pull-Out Tests of Anchorage Body under Different Loading Rates[J]. Shock and Vibration, 2015, 2015: 1-8.
    [27] 李东印, 王伸.螺纹钢横肋作用下锚固体应力分布与破坏规律[J].煤炭学报, 2015, 40(9): 2026-2032.

    LI Dongyin, WANG Shen. Research on load distribution and failure of fully grouted bolt under threadsteel rib[J]. Journal of China Coal Society, 2015, 40(9): 2026-2032.

    [28] 黄明华, 周智, 欧进萍.全长黏结式锚杆锚固段荷载传递机制非线性分析[J].岩石力学与工程学报, 2014, 33(S2): 3992-3997.

    HUANG Minghua, ZHOU Zhi, OU Jinping. Nonlinear analysis on load transfer mechanism ofwholly grouted anchor rod along anchoring section[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2): 3992-3997.

    [29] MA Shuqi, JAN Nemcik, NAJ Aziz. An analytical model of fully grouted rock bolts subjected to tensile load[J]. Construction and Building Materials, 2013, 49: 519-526.
    [30] 黄明华, 周智, 欧进萍.拉力型锚杆锚固段拉拔受力的非线性全历程分析[J].岩石力学与工程学报, 2014, 33(11): 2190-2199.

    HUANG Minghua, ZHOU Zhi, OU Jinping. Nonlinear full-rangeanalysis of load transfer in fixed segment oftensileanchors[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(11): 2190-2199.

    [31] 张季如, 唐保付.锚杆荷载传递机理分析的双曲函数模型[J].岩土工程学报, 2002(2): 188-192.

    ZHANG Jinu, TANG Baofu. Hyperbolic function model to analyze load transfer mechanism on bolts[J]. Chinese Journal of Geotechnical Engineering, 2002(2): 188-192.

    [32] 周炳生, 王保田, 梁传扬, 等.全长黏结式锚杆锚固段荷载传递特性研究[J].岩石力学与工程学报, 2017, 36(S2): 3774-3780.

    ZHOU Bingsheng, WANG Baotian, LIANG Chuanyang, et al. Study on load transfer characteristics of wholly grouted bolt[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S2): 3774-3780.

    [33] 周世昌, 朱万成, 于水生.基于双指数剪切滑移模型的全长锚固锚杆荷载传递机制分析[J].岩石力学与工程学报, 2018, 37(S2): 3817-3825.

    ZHOU Shichang, ZHU Wancheng, YU Shuisheng. Analysis of load transfer mechanism for fully grouted rockbolts based on the bi-exponential shear-slip model[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S2): 3817-3825.

    [34] XU Xingliang, TIAN Suchuan. Load transfer mechanism and critical length of anchorage zone for anchor bolt[J]. PloS one, 2020, 15(1): 1-15.
    [35] 李怀珍, 李学华, 种照辉, 等.煤岩锚固系统滑移脱黏试验研究与力学性能分析[J].采矿与安全工程学报, 2017, 34(6): 1088-1093.

    LI Huaizhen, LI Xuehua, CHONG Zhaohui, et al. Experimental research on slippage mode and analysis on mechanical properties of coal rock anchorage system[J]. Journal of Mining & Safety Engineering, 2017, 34(6): 1088-1093.

    [36] 陈建功, 陈晓东.基于小波函数的锚杆拉拔全过程分析[J].岩土力学, 2019, 40(12): 4590-4596.

    CHEN Jiangong, CHEN Xiaodong. Analysis of whole pro-cess of bolt pulling based on wavelet function[J]. Rock and Soil Mechanics, 2019, 40(12): 4590-4596.

    [37] 郭金刚, 李耀晖, 何富连, 等.基于残余剪切强度的全长黏结锚杆拉拔模拟[J].岩土力学, 2021, 42(11): 2953-2960.

    GUO Jingang, LI Yaohui, HE Fulian, et al. Pullout simula-tion on fully grouted rock bolts basedon residual shear strength[J]. Rock and Soil Mechanics, 2021, 42(11): 2953-2960.

    [38] LIU Xiaohu, YAO Zhishu, XUE Weipei, et al. Experimental Study of the Failure Mechanism of the Anchorage Interface under Different Surrounding Rock Streng-ths and Ambient Temperatures[J]. Advances in Civil Engineering, 2021, 2021: 1-17.
    [39] 李怀珍, 李学华.基于界面滑移脱黏的锚杆合理锚固长度研究[J].岩土力学, 2017, 38(11): 3106-3112.

    LI Huaizhen, LI Xuehua. Determination of rational anchorage length of bolt based on slip-debonding failure mode of interface[J]. Rock and Soil Mechanics, 2017, 38(11): 3106-3112.

    [40] 伍国军, 褚以惇, 陈卫忠, 等.地下工程锚固界面力学模型及其时效性研究[J].岩土力学, 2011, 32(1): 237-243.

    WU Guojun, CHU Yidun, CHEN Weizhong, et al. Constitutive model of anchorage interface in underground engineering and its time-effect analysis[J]. Rock and Soil Mechanics, 2011, 32(1): 237-243.

    [41] 王刚, 韩伟, 刘传正, 等.预应力锚杆-围岩耦合模型时变效应分析[J].中国公路学报, 2018, 31(10): 311-319.

    WANG Gang, HAN Wei, LIU Chuanzheng, et al. Time-dependent behavior for coupling model of pre-stressed bolt and rock mass[J]. China Journal of Highway and Transport, 2018, 31(10): 311-319.

    [42] 董恩远, 王卫军, 马念杰, 等.考虑围岩蠕变的锚固时空效应分析及控制技术[J].煤炭学报, 2018, 43(5): 1238-1248.

    DONG Enyuan, WANG Weijun, MA Nianjie, et al. Analysis of anchor space-time effect and research of control technology considering creep of surrounding rock[J]. Journal of China Coal Society, 2018, 43(5): 1238-1248.

    [43] 康红普, 姜铁明, 高富强.预应力锚杆支护参数的设计[J].煤炭学报, 2008, 33(7): 721-726.

    KANG Hongpu, JIANG Tiemign, GAO Fuqiang. Design for pretensioned rock bolting parameters[J]. Journal of China Coal Society, 2008, 33(7): 721-726.

    [44] WANG Qiong, WANG Fengnian, REN Aiwu, et al. Corrosion behavior and failure mechanism of prestressed rock bolts (cables) in the underground coal mine[J]. Advances in Civil Engineering, 2021, 2021: 1-11.
    [45] ZHU Jiebing, WANG Xiaowei, CONG Li, et al. Corrosion damage behavior of prestressed rock bolts under aggressive environment[J]. KSCE Journal of Civil Engineering, 2019, 23(7): 3135-3145.
    [46] 何满潮, 齐干, 程骋, 等.深部复合顶板煤巷变形破坏机制及耦合支护设计[J].岩石力学与工程学报, 2007(5): 987-993.

    HE Manchao, QI Gan, CHENG Cheng, et al. Deformation and damage mechanisms and coupling support design in deep coal roadway with compound roof[J]. Chinese Journal of Geotechnical Engineering, 2007(5): 987-993.

    [47] WANG Dong, JIANG Yujing, SUN Xiaoming, et al. Nonlinear large deformation mechanism and stability control of deep soft rock roadway: A case study in China[J]. Sustainability, 2019, 11(22): 1-20.
    [48] LV Jiakun, WAN Zhijun, YANG Yongjie, et al. Failure characteristics and stability control technology of dynamic pressure roadway affected by the mining activity: A case study[J]. Engineering Failure Analysis, 2022, 131: 1-16.
    [49] YANG Yushun, FANG Zhiming, JI Guangying, et al. Study on mechanical properties and control technology of sur-rounding rock in the fracture zone of a roadway[J]. Shock and Vibration, 2021, 2021: 1-14.
    [50] 郑铮, 杨增强, 朱恒忠, 等.倾斜煤层沿空异形巷道煤柱宽度与围岩控制研究[J].采矿与安全工程学报, 2019, 36(2): 223-231.

    ZHENG Zheng, YANG Zengqiang, ZHU Hengzhong, et al. Study on reasonable coal-pillar width and surrounding-rock control of gobside irregular roadway in inclined seam[J]. Journal of Mining & Safety Engineering, 2019, 36(2): 223-231.

    [51] JIANG Lili, YANG Zengqiang, LI Gangwei, et al. Research on the Reasonable Coal Pillar Width and Surrounding Rock Supporting Optimization of Gob-Side Entry under Inclined Seam Condition[J]. Advances in Civil Engineering,2021, 2021: 1-13.
    [52] 何满潮.深部软岩工程的研究进展与挑战[J].煤炭学报, 2014, 39(8): 1409-1417.

    HE Manchao. Progress and challenges of soft rock engineering in depth[J]. Journal of China Coal Society, 2014, 39(8): 1409-1417.

    [53] PENG Wenqing, ZHU Hao, WANG Qipeng, et al. Study on safety control of large-section roadway with high stress and broken surrounding rock[J]. Advances in Civil Engineering, 2021, 2021: 1-12.
    [54] 张百胜, 王朋飞, 崔守清, 等.大采高小煤柱沿空掘巷切顶卸压围岩控制技术[J].煤炭学报, 2021, 46(7): 2254-2267.

    ZHANG Baisheng, WANG Pengfei, CUl Shouqing, et al. Mechanism and surrounding rock control of roadway driving along gob inshallow-buried, large mining height and small coal pillars by roof cutting[J]. Journal of China Coal Society, 2021, 46(7): 2254-2267.

    [55] LI Guang, MA Fengshan, GUO Jie, et al. Study on deformat-ion failure mechanism and support technology of deep soft rock roadway[J]. Engineering Geology, 2020, 264(C): 1-15.
    [56] LV Jiakun, WAN Zhijun, YANG Yongjie, et al. Failure char-acteristics and stability control technology of dynamic pressure roadway affected by the mining activity: A case study[J]. Engineering Failure Analysis, 2022, 131: 1-16.
    [57] 于远祥.矩形巷道围岩变形破坏机理及在王村矿的应用研究[D].西安: 西安科技大学, 2013.
    [58] 康红普.煤巷锚杆支护动态信息设计法及其应用[J].煤矿开采, 2002(1): 5-8.

    KANG Hongpu. Dynamic and informational rock bolting design method for coal roadway and its application[J]. Coal Mining Technology, 2002(1): 5-8.

    [59] 杨振茂, 马念杰, 孔恒, 等.以地应力为基础的锚杆支护设计方法[J].岩石力学与工程学报, 2003(2): 270-275.

    YANG Zhenmao, MA Nianjie, KONG Heng, et al. Design method of bolt support for coal seam roadway based on geostress[J]. Chinese Journal of Rock Mechanics and Engineering, 2003(2): 270-275.

    [60] 鞠文君.冲击矿压巷道支护能量校核设计法[J].煤矿开采, 2011, 16(3): 81-83.

    JU Wenjun. Energy checking design method of roadway with rock-burst danger[J]. Coal Mining Technology, 2011, 16(3): 81-83.

    [61] WANG Hongtao, LIU Luyao, LI Shucai, et al. An upper bound design method for roof bolting support in roadways with top coal[J]. Arabian Journal of Geosciences, 2021, 14(9): 1-12.
    [62] 王茂源.煤巷锚杆支护设计混合智能系统研究[D].北京: 中国矿业大学(北京), 2016.
    [63] 王连国, 陆银龙, 孙小康.软岩巷道锚注支护智能设计专家系统及应用[J].采矿与安全工程学报, 2016, 33(1): 1-6.

    WANG Lianguo, LU Yinlong, SUN Xiaokang, et al. Intelligent expert system for designing bolt-grouting support of softrock roadways and its applications[J]. Journal of Mining & Safety Engineering, 2016, 33(1): 1-6.

    [64] 周保生, 朱维申, 李术才.神经网络在综放回采巷道锚杆支护设计中的应用研究[J].岩石力学与工程学报, 2001(4): 497-501.

    ZHOU Baosheng, ZHU Weishen, LI Shucai. Using neural network on bolting support design of mining roadway for fully mechanized working face with top-coal caving[J]. Chinese Journal of Rock Mechanics and Engi-neering, 2001(4): 497-501.

    [65] 何满潮, 陈新, 梁国平, 等.深部软岩工程大变形力学分析设计系统[J].岩石力学与工程学报, 2007(5): 934-943.

    HE Manchao, CHEN Xin, LIANG Guoping. Software system for large deformation mechanical analysis of soft rock engineering at great depth[J]. Chinese Journal of Rock Mechanics and Engineering, 2007(5): 934-943.

    [66] 杨仁树, 马鑫民, 李清, 等.煤矿巷道支护方案专家系统及应用研究[J].采矿与安全工程学报, 2013, 30(5): 648-652.

    YANG Renshu, MA Xinmin, LI Qing. Research on expert system of roadway supporting schemes for coal mine and its application[J]. Journal of Mining & Safety Engineering, 2013, 30(5): 648-652.

    [67] ZHANG Kun, SU Jinpeng, LIU Zengkai, et al. Sensitivity Analysis and Experimental Verification of Bolt Support Parameters Based on Orthogonal Experiment[J]. Shock and Vibration, 2020, 2020: 1-13.
    [68] CHEN C N, CHANG W C. Optimal Rock Bolt Installation Design Based on 3D Rock Stress Distribution and Stereogr-aphy Coupled Analysis[J]. Journal of Mechanics, 2018, 34(6): 749-758.
    [69] 刘海雁, 左建平, 刘德军, 等.基于正交矩阵分析的巷道锚杆支护优化[J].采矿与安全工程学报, 2021, 38(1): 84-93.

    LIU Haiyan, ZUO Jianping, LIU Dejun, et al. Optimization of roadway bolt support based on orthogonal matrix anal-ysis[J]. Journal of Mining & Safety Engineering, 2021, 38(1): 84-93.

    [70] 张明磊, 张益东, 季明, 等.基于模糊可拓综合评价方法的巷道支护参数优化[J].采矿与安全工程学报, 2016, 33(6): 972-978.

    ZHANG Minglei, ZHANG Yidong, JI Ming, et al. Roadway support parameter optimization based on fuzzy extension synthetic evaluation[J]. Journal of Mining & Safety Engineering, 2016, 33(6): 972-978.

    [71] 马振乾, 陶春梅, 左宇军, 等.基于能量平衡的厚层软弱顶板巷道支护技术研究[J].采矿与安全工程学报, 2018, 35(3): 496-502.

    MA Zhenqian, TAO Chunmei, ZUO Yujun, et al. Supporting technology of roadways with thick andsoft roof based on energy balance theory[J]. Journal of Mining & Safety Engineering, 2018, 35(3): 496-502.

    [72] GUO Yinan, ZHANG Xu, GONG Dunwei, et al. Novel Interactive Preference-based Multi-objective Evolutionary Optimization for Bolt Supporting Networks[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(4): 750-764.
    [73] KANG Hongpu, YANG Jinghe, MENG Xianzhi. Tests and analysis of mechanical behaviours of rock bolt components for China’s coal mine roadways[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(1): 14-26.
    [74] 康红普, 姜鹏飞, 黄炳香, 等.煤矿千米深井巷道围岩支护—改性—卸压协同控制技术[J].煤炭学报, 2020, 45(3): 845-864.

    KANG Hongpu, JIANG Pengfei, HUANG Bingxiang, et al. Roadway strata control technology by means of bolting-modification-destressing in synergy in 1 000 m deep coal mines[J]. Journal of China Coal Society, 2020, 45(3): 845-864.

    [75] 吴拥政, 康红普, 吴建星, 等.矿用预应力钢棒支护成套技术开发及应用[J].岩石力学与工程学报, 2015, 34(S1): 3230-3237.

    WU Yongzheng, KANG Hongpu, WU Jianxing, et al. Development and application of mine prestressed steel bars supporting technology[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3230-3237.

    [76] 韩军, 王鑫, 张明, 等.适用于围岩大变形的螺纹钢锚杆设计及工程实践[J].煤炭学报, 2021, 46(12): 3745-3755.

    HAN Jun, WANG Xin, ZHANG Ming, et al. Design and engineering practice of rebar bolt for large deformation roadway[J]. Journal of China Coal Society, 2021, 46(12): 3745-3755.

    [77] 赵象卓, 张宏伟, CAO Chen, 等.大直径玻璃钢锚杆工作面帮支护性能试验研究[J].中国安全科学学报, 2019, 29(2): 118-124.

    ZHAO Xiangzhuo, ZHANG Hongwei, CAO Chen, et al. Experimental study on panel side supporting performance of large diameter FRP bolts[J]. China Safety Science Journal, 2019, 29(2): 118-124.

    [78] 方新秋, 何杰, 何加省.深部高应力软岩动压巷道加固技术研究[J].岩土力学, 2009, 30(6): 1693-1698.

    FANG Xinqiu, HE Jie, HE Jiasheng. Research on reinforced technology for deep soft rock and dynamic pressurized roadway under high stress[J]. Rock and Soil Mechanics, 2009, 30(6): 1693-1698.

    [79] 潘锐, 程桦, 王雷, 等.深部巷道锚注支护效果及组合式高强锚注控制技术研究[J].采矿与安全工程学报, 2020, 37(3): 461-472.

    PAN Rui, CHENG Hua, WANG Lei, et al. Analysis of the bolt-grouting support in deep roadway and combined high-strength bolt-grouting control technology[J]. Journal of Mining & Safety Engineering, 2020, 37(3): 461-472.

    [80] 张进鹏, 刘立民, 刘传孝, 等.基于预应力锚和自应力注的破碎围岩锚注加固应用研究[J].采矿与安全工程学报, 2021, 38(4): 774-783.

    ZHANG Jinpeng, LIU Limin, LIU Chuanxiao, et al. Application of bolt-grouting reinforcement for broken surrounding rock based on prestressed bolt and self-stress grouting[J]. Journal of Mining & Safety Engineering, 2021, 38(4): 774-783.

    [81] 赵东平, 王卢伟, 喻渝, 等.隧道系统锚杆研究现状与发展方向[J].土木工程学报, 2020, 53(8): 116-128.

    ZHAO Dongping, WANG Luwei, YU Yu, et al. Research status and development direction of tunnel system bolt[J]. China Civil Engineering Journal, 2020, 53(8): 116-128.

    [82] 何满潮, 郭志飚.恒阻大变形锚杆力学特性及其工程应用[J].岩石力学与工程学报, 2014, 33(7): 1297-1308.

    HE Manchao, GUO Zhibiao. Mechanical property and engineering application of anchor bolt with constant resistance and large deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(7): 1297-1308.

    [83] 江贝, 王琦, 魏华勇, 等.地下工程吸能锚杆研究现状与展望[J].矿业科学学报, 2021, 6(5): 569-580.

    JIANG Bei, WANG Qi, WEI Huayong, et al. Recent deveopment and prospects of energy-absorbing bolt in undergrund engineering[J]. Journal of Mining Science and Technology, 2021, 6(5): 569-580.

    [84] 张红军, 李海燕, 张太平, 等.深部软岩巷道高预应力增阻大变形锚杆研究及工程应用[J].煤炭学报, 2019, 44(2): 409-418.

    ZHANG Hongjun, LI Haiyan, ZHANG Taiping, et al. Research and engineering application of high prestressed resistance enhancement large deformation bolt in deep soft rock roadway[J]. Journal of China Coal Society, 2019, 44(2): 409-418.

    [85] XU Shuai, HOU Pengyuan, CAI Ming, et al. An Experiment Study on a Novel Self-Swelling Anchorage Bolt[J]. Rock Mechanics and Rock Engineering, 2019, 52(11): 4855-4862.
    [86] ZHAO Baoyou, LI Jiawei, WANG Aiwen, et al. Theoretical and numerical analysis of a new energy-absorbing rock bolt with controllable constant resistance and large displacement[J]. Tunnelling & Underground Space Technology, 2020, 106: 103581.
    [87] 赵兴东, 朱乾坤, 牛佳安, 等.一种新型J释能锚杆力学作用机制及其动力冲击实验研究[J].岩石力学与工程学报, 2020, 39(1): 13-21.

    ZHAO Xingdong, ZHU Qiankun, NU Jiaan, et al. Mechanical mechanism analysis and dynamic impact experimental tests of a kind of novel J energy-releasing bolts[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(1): 13-21.

    [88] CHEN Lu, LI Qingwen, YANG Jianming, et al. Laboratory Testing on Energy Absorption of High-Damping Rubber in a New Bolt for Preventing Rockburst in Deep Hard Rock Mass[J]. Shock and Vibration, 2018, 2018: 1-12.
    [89] MOSTAFA Sharifzadeh, LOU Jinfu, Brendan Crompton. Dynamic performance of energy-absorbing rockbolts based on laboratory test results. Part I: Evolution, deformation mechanisms, dynamic performance and classification[J]. Tunnelling & Underground Sp-ace Technology, 2020, 105: 103510.
    [90] KNOX G, BERGHORST A, CROMPTON B. The relationship between the magnitude of impact velocity per impulse and cumulative absorbed energy capacity of a rock bolt[C]//Proceedings of The Fourth Australasian Ground Control in Mining Conference Proceedings. Sydney Australia: The Australasian Institute of Mining and Metallurgy, 2018: 160-169.
    [91] WU Xuezhen, JIANG Yujing, WANG Gang, et al. Performance of a New Yielding Rock Bolt Under Pull and Shear Loading Conditions[J]. Rock Mechanics and Rock Engineering, 2019, 52(9): 3401-3412.
    [92] 王琦, 何满潮, 许硕, 等.恒阻吸能锚杆力学特性与工程应用[J].煤炭学报, 2022, 47(4): 1490-1500.

    WANG Qi, HE Manchao, XU Shuo, et al. Mechanical properties and engineering application of constant resistance energy absorbing bolt[J]. Journal of China Coal Society, 2022, 47(4): 1490-1500.

    [93] 张明, CAO Chen, 张怀东, 等.树脂锚固剂中添加不同钢质骨料对锚固力的影响[J].煤炭学报, 2019, 44(6): 1690-1697.

    ZHANG Ming, CAO Chen, ZHANG Huaidong, et al. Effect of anchoring force by adding steel aggregate in resin anchoring agent[J]. Journal of China Coal Society, 2019, 44(6): 1690-1697.

    [94] ZHANG Ming, HAN Jun, CAO Chen, et al. Experimental study on anchorage performance of rockbolts by adding steel aggregates into resin anchoring agents[J]. PloS one, 2021, 16(7): 1-25.
    [95] 刘刚, 东兆星.井巷工程[M].徐州: 中国矿业大学出版社, 2016.
    [96] 王正胜, 李建忠, 林健, 等.深部高应力富水黏土软岩大巷底鼓机理及控制技术[J].煤炭科学技术, 2021, 49(7): 71-78.

    WANG Zhengsheng, LI Jianzhong, LIN Jian, et al. Mechanism and control technology of floor heave in deep high-stress water-rich clay soft rock roadway[J]. Coal Science and Technology, 2021, 49(7): 71-78.

    [97] LIU Xiaohu, YAO Zhishu, XUE Weipei, et al. Development, Performance, and Microscopic Analysis of New Anchorage Agent with Heat Resistance, High Strength, and Full Length[J]. Advances in Materials Science and Engineering, 2019, 2019: 1-9.
    [98] HUANG Shunjie, MENG Xiangrui, ZHAO Guangming, et al. Research and Performance Test of New Full-Length Anchorage Material[J]. Advances in Materials Science and Engineering, 2021, 2021: 1-11.
  • 期刊类型引用(5)

    1. 任志成,时宝,胡继峰,伦嘉云. 煤矿安全管理智能化建设及发展研究. 中国煤炭. 2023(07): 61-66 . 百度学术
    2. 宋涛,王洪兴. 矿山智能化建设的挑战研究. 世界有色金属. 2023(11): 220-222 . 百度学术
    3. 雷志勇,王磊,高振飞,王忠鑫. 露天煤矿智能安全保障体系现状与发展趋势. 露天采矿技术. 2023(04): 17-22 . 百度学术
    4. 高旗. 5G技术在煤矿智能化中的应用前景. 内蒙古煤炭经济. 2023(18): 136-138 . 百度学术
    5. 任志成,孔德中,宋高峰,许鹏飞,李淋. 基于GRA和AHP的煤矿一般事故防控研究. 矿业研究与开发. 2023(12): 131-137 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  60
  • HTML全文浏览量:  14
  • PDF下载量:  24
  • 被引次数: 5
出版历程
  • 发布日期:  2023-06-19

目录

/

返回文章
返回