综放工作面过单面见方冲击危险性多参量监测预警分析
Multi-parameter monitoring and early warning analysis of impact risk in fully mechanized caving face passing square
-
摘要: 工作面在过见方位置时,上覆岩层会发生剧烈变动,容易引发冲击地压等一系列矿压显现问题;基于微震、矿压、应力、震源CT等监测数据,对工作面见方阶段监测结果进行研究。结果表明:微震事件数和能量数在见方前3~6 d发生显著增加;见方期间来压工作阻力和非来压工作阻力均显著大于非见方期间,并且矿压数据在工作面接近见方位置时才明显增加;超前支承压力在见方前也会增加,其值显著大于一般采动的影响;接近见方位置冲击地压危险性指数也显著增大;接近见方位置时应力监测、微震监测、矿压监测数据会先后发生不同程度上升现象,并持续一段时间。综上微震监测、采动应力监测和震源CT监测均可作为工作面见方的监测预警指标,据此提出了“力—震动—能量”的见方一体化监测预警体系。Abstract: When the working face is passing the square position, the overlying rock strata will change drastically, which is easy to cause a series of rock pressure problems such as rock burst. Based on the monitoring data of microseismic, mine pressure, stress, CT, etc., the monitoring results in the square phase of the working face are researched and summarized. The research results show that in 307 working face, the number of microseismic events and the number of energy increased significantly in 3-6 days before the square; the resistance of incoming pressure and the resistance of non-compression work during the square period are greater than those during the non-square period, and the rock pressure data is close to the working surface significant increase occurs when the square position; the leading support stress will also increase before the square, and its value is greater than the impact of general mining; the risk index of rock burst near the square also increased significantly; approaching to the square position, the stress monitoring, microseismic monitoring and mine pressure monitoring data will successively increase to different degrees and last for a period of time. Microseismic, rock pressure, stress and CT can be used as monitoring and early warning indicators of 307 working face to guide the work of working face pressure relief, and a monitoring and early warning system including “force- vibration-energy” is proposed.
-
Keywords:
- strata behaviors /
- microseism /
- square falling /
- rock burst /
- supporting stress /
- CT monitoring
-
-
[1] 窦林名,何学秋.冲击地压防治理论与技术[M].徐州:中国矿业大学出版社,2001. [2] 窦林名,赵从国,杨思光,等.煤矿开采冲击矿压灾害防治[M].徐州:中国矿业大学出版社,2006. [3] 蓝航,杜涛涛,彭永伟,等.浅埋深回采工作面冲击地压发生机理及防治研究[J].煤炭学报,2012,37(10):1618-1623. LAN Hang, DU Taotao, PENG Yongwei, et al. Rock-burst mechanism and prevention in working face of shallow buried coal-seam[J]. Journal of China Coal Society, 2012, 37(10): 1618-1623.
[4] 蓝航,齐庆新,潘俊锋,等.我国煤矿冲击地压特点及防治技术分析[J].煤炭科学技术,2011,39(1):11. LAN Hang, QI Qingxin, PAN Junfeng, et al. Analysis on features as well as prevention and control technology of mine strata pressure bumping in China[J]. Coal Science and Technology, 2011,39(1): 11.
[5] 李国营,张呈祥.坚硬顶板工作面采空区见方阶段动压显现规律及防治技术[J].中国煤炭,2018,44(4):41-45. LI Guoying, ZHANG Chengxiang. Dynamic pressure behaviors and control technology during goaf square stage in working face with hard roof[J]. China Coal, 2018, 44(4): 41-45.
[6] 张翔,吕玉磊,尹中凯,等.巨厚砂岩层组综采工作面强矿压显现机理研究[J].煤矿安全,2020,51(3):194-199. ZHANG Xiang, LYU Yulei, YIN Zhongkai, et al. Study on mechanism of strong strata pressure in fully mechanized mining face of huge thick sandstone formation[J]. Safety in Coal Mines, 2020, 51(3): 194-199.
[7] 王朝引,张翔.厚煤层综采工作面强矿压分布规律与支护技术研究[J].建井技术,2019,40(1):27-31. WANG Chaoyin, ZHANG Xiang. Study on distribution law of strong rock pressure and support technology in fully mechanized mining coal working face of thick coal seam[J]. Mine Construction Technology, 2019, 40(1): 27-31.
[8] 张锋,邹银辉,杨贵儒.综放工作面过单面见方危险区域冲击地压防治效果分析[J].煤矿安全,2017,48(4):195-198. ZHANG Feng, ZOU Yinhui, YANG Guiru. Analysis of rock burst prevention effect of fully mechanized caving face passing through single square danger zone[J]. Safety in Coal Mines, 2017, 48(4): 195-198.
[9] 张亮,解兴智,张书敬.浅埋长工作面非坚硬顶板见方强来压机理分析[J].中国煤炭,2016,42(9):46-49. ZHANG Liang, XIE Xingzhi, ZHANG Shujing. Mechanism analysis of violent roof weighting in square goaf of shallow and long workface[J]. China Coal, 2016, 42(9): 46-49.
[10] 谭云亮,胡善超.顶板见方来压发生条件分析研究[J].煤炭科学技术,2015,43(6):19-22. TAN Yunliang, HU Shanchao. Analysis and study on condition to cause roof weighing in square meter[J]. Coal Science and Technology, 2015, 43(6): 19-22.
[11] 郭晓朋.深井孤岛工作面不同采动阶段冲击地压预测与防治[J].煤炭与化工,2015,38(1):32-36. GUO Xiaopeng. Prediction and prevention of rock burst in different mining stages of deep isolated island working face[J]. Coal and Chemical Industry, 2015, 38(1): 32-36.
[12] 王书文,焦彪.采空区顶板见方垮落的覆岩空间结构特征及形成条件[J].中国煤炭,2014,40(10):43. WANG Shuwen, JIAO Biao. Spatial structure features and formation conditions of square-caving overlying strata in gob roof[J]. China Coal, 2014, 40(10): 43.
[13] 孔令海,齐庆新,姜福兴,等.长壁工作面采空区见方形成异常来压的微震监测研究[J].岩石力学与工程学报,2012,31(S2):3889-3896. KONG Linghai, QI Qingxin, JIANG Fuxing, et al. Abnormal strata stress resulted from goaf square of longwall face based on microseismic monitoring[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S2): 3889-3896.
[14] 张成武,付兴玉,石永生.西部矿区首采工作面主控岩层见方破断诱发动压风险研究[J].煤矿安全,2020,51(6):207-211. ZHANG Chengwu, FU Xingyu, SHI Yongsheng. Study on risk of dynamic pressure induced by key strata fracture in square area of the first face in western mining area[J]. Safety in Coal Mines, 2020, 51(6): 207-211.
[15] 王立峰,王金平.采空区顶板见方垮落诱发工作面CO气体异常涌出分析及治理[J].神华科技,2018, 16(9):17-19. WANG Lifeng, WANG Jinping. Analysis about abnormal CO discharge volume in working face by square overlying strata in gob roof and its control measures[J]. Shenhua Science and Technology, 2018, 16(9): 17-19.
[16] 李东,姜福兴,王存文,等.“见方效应”与“应力击穿效应”联动致灾机理及防治技术研究[J].采矿与安全工程学报,2018,35(5):1014-1021. LI Dong, JIANG Fuxing, WANG Cunwen, et al. Study on the mechanism and prevention technology of “square position” and “stress breakdown effect” inducing rockburst[J]. Journal of Mining & Safety Engineering, 2018, 35(5): 1014-1021.
[17] 李帅,李鹏,朱昊,等.高家堡煤矿104工作面采动应力分布及防冲设计[J].陕西煤炭,2020,39(1):32. LI Shuai, LI Peng, ZHU Hao, et al. The distribution of mining stress and design of rock burst prevention for No.104 working face in Gaojiabao Coal Mine[J]. Shaanxi Coal, 2020, 39(1): 32.
[18] 宋大钊,何学秋,窦林名,等.煤层突出危险微震区域探测技术研究[J].中国安全科学学报,2021,31(1):89-94. SONG Dazhao, HE Xueqiu, DOU Linming, et al. Research on MS regional detection technology for coal and gas outburst hazard[J]. Chinese Safety Science Journal, 2021, 31(1): 89-94.
[19] 郝宪杰,冯夏庭,江权,等. 基于电镜扫描实验的柱状节理隧洞卸荷破坏机制研究[J]. 岩石力学与工程学报,2013,32(8):1647-1655. HAO Xianjie, FENG Xiating, JIANG Quan, et al. Research on unloading failure mechanism of columnar jointed rock mass in tunnel based on scanning electron microscopy experiments[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1647.
[20] 郝宪杰,袁亮,卢志国,等.考虑煤体非线性弹性力学行为的弹塑性本构模型[J].煤炭学报,2017,42(4):896-901. HAO Xianjie, YUAN Liang, LU Zhiguo, et al. An elasticplastic-soften constitutive model of coal considering itsnonlinear elastic mechanical behavior[J]. Journal of China Coal Society, 2017, 42(4): 896-901.
[21] 郝宪杰,袁亮,郭延定,等.考虑峰后能量非稳态释放的硬煤脆性度指标[J].岩石力学与工程学报,2017, 36(11):2641-2649. HAO Xianjie, YUAN Liang, GUO Yanding, et al. A new brittleness index for hard coal considering unsteady energy release at post-peak stage[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (11): 2641-2649.
-
期刊类型引用(15)
1. 张铎,孙伟,郭曦蔓,岑孝鑫,代爱萍. 煤制油气化灰渣防灭火凝胶的制备及性能. 材料导报. 2024(03): 255-261 . 百度学术
2. 姜小龙,孙明,常建平,董红娟. 矿井煤自燃防灭火材料阻燃机理综述. 内蒙古科技大学学报. 2024(03): 226-229 . 百度学术
3. 李洋,戴广龙,杨苗苗. 高保水矿用凝胶阻化材料的制备和性能研究. 煤炭技术. 2023(03): 173-177 . 百度学术
4. 段西凯,周睿,何勇军. 矿用超吸水防灭火凝胶制备及性能研究. 煤矿安全. 2023(02): 71-76 . 本站查看
5. 谢军,卞兆庆,解恒星,王怡,王法铨. 基于CiteSpace的矿用凝胶研究趋势分析. 煤矿安全. 2023(02): 54-60 . 本站查看
6. 王海军,吴艳,马良,陈崇枫,孙保平,王相业,吴敏杰,刘善德. 陕北浅埋煤层一体化漏风通道探查技术. 煤矿安全. 2023(04): 83-90 . 本站查看
7. 陈鹏燕,周春山,程熙宇. CMC/AlCit/GDL防灭火凝胶的流变性能及本构方程研究. 应用化工. 2023(04): 1010-1014 . 百度学术
8. 唐金召,范利丹,张纪云,徐峰,余雳伟,杨杰,赵伟. 我国煤矿巷道锚杆支护理论及技术研究进展. 煤矿安全. 2023(06): 131-143 . 本站查看
9. 王毅泽,董凯丽,张玉龙,董智宇,王俊峰. CMC/ZrCit/GDL防灭火凝胶泡沫的制备及特性研究. 煤炭科学技术. 2023(06): 122-129 . 百度学术
10. 陈鹏燕,周春山. 矿用双网络凝胶防灭火特性研究. 煤矿安全. 2023(11): 84-91 . 本站查看
11. 杨苗苗,戴广龙. 矿用煤自燃防治高吸水高保水性水凝胶的制备及性能研究. 煤矿安全. 2022(02): 40-45 . 本站查看
12. 卜祝龙,张铎,吕英英,王慧,王泓皓,杨娟娟. 煤渣填充防火凝胶配比实验研究. 粘接. 2022(01): 12-18 . 百度学术
13. 韩福志,邵和,司俊鸿,张俊. 矿用堵漏无机触变防灭火凝胶的流变特性研究. 矿业安全与环保. 2022(01): 1-7 . 百度学术
14. 刘东. 基于程序升温实验的煤低温氧化特性数值模拟研究. 煤矿安全. 2022(05): 40-45 . 本站查看
15. 秦存利,刘袁昊,李军. 新型高分子材料防灭火技术研究与安全评估. 山东煤炭科技. 2021(10): 212-215+218+225 . 百度学术
其他类型引用(10)
计量
- 文章访问数: 37
- HTML全文浏览量: 0
- PDF下载量: 10
- 被引次数: 25