• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

页岩层理弱面对裂缝穿层扩展的影响数值模拟研究

白岳松, 胡耀青, 何睿, 廖兴川, 谭劲, 易良平, 黄刘科, 曹爱武, 李杰

白岳松, 胡耀青, 何睿, 廖兴川, 谭劲, 易良平, 黄刘科, 曹爱武, 李杰. 页岩层理弱面对裂缝穿层扩展的影响数值模拟研究[J]. 煤矿安全, 2023, 54(5): 240-246.
引用本文: 白岳松, 胡耀青, 何睿, 廖兴川, 谭劲, 易良平, 黄刘科, 曹爱武, 李杰. 页岩层理弱面对裂缝穿层扩展的影响数值模拟研究[J]. 煤矿安全, 2023, 54(5): 240-246.
BAI Yuesong, HU Yaoqing, HE Rui, LIAO Xingchuan, TAN Jin, YI Liangping, HUANG Liuke, CAO Aiwu, LI Jie. Numerical simulation of the effect of weak shale bedding on fracture propagation through strata[J]. Safety in Coal Mines, 2023, 54(5): 240-246.
Citation: BAI Yuesong, HU Yaoqing, HE Rui, LIAO Xingchuan, TAN Jin, YI Liangping, HUANG Liuke, CAO Aiwu, LI Jie. Numerical simulation of the effect of weak shale bedding on fracture propagation through strata[J]. Safety in Coal Mines, 2023, 54(5): 240-246.

页岩层理弱面对裂缝穿层扩展的影响数值模拟研究

Numerical simulation of the effect of weak shale bedding on fracture propagation through strata

  • 摘要: 层理弱面是影响页岩油气水力裂缝穿层扩展的关键因素之一,而层理弱面强度主要由黏结强度、内摩擦角以及抗张强度决定。为探究层理弱面对水力裂缝穿层扩展的影响机理,基于三维块体离散元法建立了含层理弱面页岩压裂数值模型,研究了黏结强度、抗张强度以及内摩擦角对水力裂缝穿层和裂缝扩展形态的影响。数值模拟结果表明:层理黏结强度对水力裂缝穿层扩展存在显著影响,黏结强度较低时水力裂缝主要为横向扩展,并伴随着较大的层理激活程度;而高黏结强度下水力裂缝穿层能力较强,主要呈近圆形扩展;层理激活主要为剪切破坏,即层理抗张强度对水力裂缝扩展无明显影响,在实际工程中可忽略不计;水力裂缝的穿层能力随内摩擦角的增大而增强,在低内摩擦角下水力裂缝易沿层理扩展。
    Abstract: Bedding strength is one of the key factors affecting the propagation of hydraulic fractures through beddings, which is mainly determined by cohesion, internal friction angle and tensile strength. However, there are few researches on this. Therefore, in order to further study the influence mechanism of bedding strength on the propagation of hydraulic fractures through beddings. Based on the three-dimensional block discrete element method, this paper simulated the propagation morphology of hydraulic fractures under different cohesion, tensile strength and internal friction angle. The simulation results show that bedding cohesion has a significant influence on the propagation of hydraulic fractures through beddings. Under low cohesion, hydraulic fractures mainly shows transverse propagation, accompanied by a larger degree of bedding activation, however, at high bonding strength, the permeability of hydraulic fractures is strong, and the propagation is nearly circular. The tensile strength of bedding has no obvious effect on the propagation capacity of hydraulic fracture and can be ignored in practical engineering. The penetration of hydraulic fractures increases with the increase of internal friction angle, and the hydraulic fractures are easy to diffuse along bedding at low internal friction angle.
  • [1] 王学军, 周勇水, 彭君, 等.川东北普光地区侏罗系千佛崖组页岩气重大突破[J].中国石油勘探, 2022, 27(5): 52-61.

    WANG Xuejun, ZHOU Yongshui, PENG Jin, et al. Major breakthrough of shale gas in the Jurassic Qianfoya Formation in Puguang area in the northeastern Sichuan Basin[J]. China Petroleum Exploration, 2022, 27(5): 52-61.

    [2] 李晗, 常旭.微地震震源机制研究进展[J].中国科学: 地球科学, 2021, 51(3): 325-338.

    LI Han, CHANG Xu. A review of the microseismic focal mechanism research[J]. Scientia Sinica (Terrae), 2021, 51(3): 325-338.

    [3] 马新华, 谢军.川南地区页岩气勘探开发进展及发展前景[J].石油勘探与开发, 2018, 45(1): 161-169.

    MA Xinhua, XIE Jun. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(1): 161-169.

    [4] 曾波, 宋毅, 杨子叶, 等.深埋海相页岩储层特性及其原位条件下脆性评价[J].工程地质学报, 2022, 30(3): 956-965.

    ZENG Bo, SONG Yi, YANG Ziye, et al. Characteristics and brittleness evaluation of the deep-marine shale under in situ conditions[J]. Journal of Engineering Geology, 2022, 30(3): 956-965.

    [5] 邹才能, 赵群, 丛连铸, 等.中国页岩气开发进展、潜力及前景[J].天然气工业, 2021, 41(1): 1-14.

    ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1-14.

    [6] 赵全民, 张金成, 刘劲歌.中国页岩气革命现状与发展建议[J].探矿工程(岩土钻掘工程), 2019, 46(8): 1-9.

    ZHAO Quanmin, ZHANG Jincheng, LIU Jinge. Status of Chinese shale gas revolution and development proposal[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2019, 46(8): 1-9.

    [7] 单祥, 何文军, 郭华军, 等.准噶尔盆地玛湖凹陷二叠系风城组页岩油储层储集空间与成岩作用[J].海相油气地质, 2022, 27(3): 325-336.

    DAN Xiang, HE Wenjun, GUO Huajun, et al. Pore space characteristics and diagenesis of shale oil reservoir of the Permian Fengcheng Formation in Mahu Sag Junggar Basin[J]. Marine Origin Petroleum Geology, 2022, 27(3): 325-336.

    [8] 谢和平, 高峰, 鞠杨, 等.页岩气储层改造的体破裂理论与技术构想[J].科学通报, 2016, 61(1): 36-46.

    XIE Heping, GAO Feng, JU Yang, et al. Novel idea of the theory and application of 3D volume fracturing for stimulation of shale gas reservoirs[J]. Chinese Science Bulletin, 2016, 61(1): 36-46.

    [9] 贾佳, 冯雷, 夏忠跃, 等.临兴中区块致密气储层伤害及保护研究[J].新疆石油天然气, 2021, 17(1): 25-28.

    JIA Jia, FENG Lei, XIA Zhongyue, et al. Characteristics and protection of tight gas reservoir in Linxingzhong block, Ordos basin[J]. Xinjiang Oil & Gas, 2021, 17(1): 25-28.

    [10] LIU Jingshou, DING Wenlong, DAI Junsheng, et al. Quantitative prediction of lower order faults based on the finite element method: a case study of the 35 m fault block in the western Hanliu fault zone in the Gaoyou Sag, east China[J]. Tectonics, 2018, 37(10): 3479-3499.
    [11] BAO S J, LIN T, NIE, H K, et al. Preliminary study of the transitional facies shale gas reservoir characteristics: taking Permian in the Xiangzhong depression as an example[J]. Earth Sci. Front, 2016, 23(1): 44-53.
    [12] LIU Jingshou, DING Wenlong, WANG Ruyue, et al. Methodology for quantitative prediction of fracture sealing with a case study of the lower Cambrian Niutitang Formation in the Cen'gong block in South China[J]. Petrol. Sci. Eng, 2018b, 160: 565-581.
    [13] HE Rui, YANG Jian, LI Li, et al. Investigating the simultaneous fracture propagation from multiple perforation clusters in horizontal wells using 3D block discrete element method[J]. Frontiers in Earth Science, 2023, 11: 1115054.
    [14] 高岳, 王涛, 严子铭, 等.页岩气高效开采中钻井完井和水力压裂的关键力学问题[J].力学学报, 2022, 54(8): 2248-2268.

    GAO Yue, WANG Tao, YAN Ziming, et al. Key mechanical problems of well drilling and completion and hydraulic fracture in highly efficient extraction of shale gas[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2248-2268.

    [15] 陈希, 刘蕊宁, 谢勃勃, 等.考虑层理缝的页岩油藏压裂水平井产能模型[J].新疆石油天然气, 2022, 18(1): 73-79.

    CHEN Xi, LIU Ruining, XIE Bobo, et al. Productivity model of fractured horizontal wells in shale oil reservoirs with bedding fractures considered[J]. Xinjiang Oil & Gas, 2022, 18(1): 73-79.

    [16] 李晓, 赫建明, 尹超, 等.页岩结构面特征及其对水力压裂的控制作用[J].石油与天然气地质, 2019, 40(3): 653-660.

    LI Xiao, HE Jianming, YIN Chao, et al. Characteristics of the shale bedding planes and their control on hydraulic fracturing[J]. Oil & Gas Geology, 2019, 40(3): 653-660.

    [17] 付海峰, 才博, 修乃岭, 等.含层理储层水力压裂缝高延伸规律及现场监测[J].天然气地球科学, 2021, 32(11): 1610-1621.

    FU Haifeng, CAI Bo, XIU Nailing, et al. The study of hydraulic fracture vertical propagation in unconventional reservoir with beddings and field monitoring[J]. Natural Gas Geoscience, 2021, 32(11): 1610-1621.

    [18] CHANG Xu, ZHAO Hongbo, CHENG Long, Fracture propagation and coalescence at bedding plane in layered rocks[J]. Journal of Structural Geology, 2020, 141: 104213.
    [19] ZHENG Yongxiang, HE Rui, HUANG Liuke, et al. Exploring the effect of engineering parameters on the penetration of hydraulic fractures through bedding planes in different propagation regimes[J]. Computers and Geotechnics, 2022, 146: 104736.
    [20] MENG Yaoyao, JING Hongwen, LIU Xiaowei, et al. Experimental and numerical investigation on the effects of bedding plane properties on the mechanical and acoustic emission characteristics of sandy mudstone[J]. Engineering Fracture Mechanics, 2021, 245(15): 107582.
    [21] ZHAI Mengyang, XUE Lei, BU Fengchang, et al. Effects of bedding planes on progressive failure of shales under uniaxial compression: Insights from acoustic emission characteristics[J]. Theoretical and Applied Fracture Mechanics, 2022, 119: 103343.
    [22] LIU Hanxiang, JING Hongwen, YIN Qian, et al. Effect of bedding plane on mechanical properties, failure mode, and crack evolution characteristic of bedded rock-like specimen[J]. Theoretical and Applied Fracture Mechanics, 2023, 123: 103681.
    [23] JU Minghe, LI Jianchun, LI Jing, et al. Loading rate effects on anisotropy and crack propagation of weak bedding plane-rich rocks[J]. Engineering Fracture Mechanics, 2020, 230(1): 106983.
    [24] 刘先珊, 曾南豆, 李涛, 等.基于改进PFC流固耦合算法的页岩水力压裂裂缝扩展研究[J].中南大学学报(自然科学版), 2022, 53(9): 3545-3560.

    LIU Xianshan, ZENG Nandou, LI Tao, et al. Propagation investigation of hydraulic fractures for shales considering improved hydro-mechanical coupling algorithm based on PFC software[J]. Journal of Central South University (Science and Technology), 2022, 53(9): 3545-3560.

    [25] 张进科, 苟利鹏, 吴文瑞, 等.水力压裂缝间距及压裂顺序对裂缝扩展影响研究[J].地下空间与工程学报, 2020, 16(S2): 603-609.

    ZHANG Jinke, GOU Lipeng, WU Wenrui, et al. Study on the influence of hydraulic fracturing interval and fracturing sequence on the propagation of fractures[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(S2): 603-609.

    [26] 冯雪磊, 马凤山, 赵海军, 等.断层影响下的页岩气储层水力压裂模拟研究[J].工程地质学报, 2021, 29(3): 751-763.

    FENG Xuelei, MA Fengshan, ZHAO Haijun, et al. Numerical simulation of hydraulic fracturing in shale gas reservoirs under fault influence[J]. Journal of Engineering Geology, 2021, 29(3): 751-763.

    [27] HUANG Liuke, HE Rui, YANG Zhaozhong, et al. Exploring hydraulic fracture behavior in glutenite formation with strong heterogeneity and variable lithology based on DEM simulation[J]. Engineering Fracture Mechanics, 2023, 278: 109020.
    [28] 张瑛堃, 陈尚斌, 李学元, 等.页岩气储层水力压裂扩展有限元模拟方法及应用[J].天然气地球科学, 2021, 32(1): 109-118.

    ZHANG Yingkun, CHEN Shangbin, LI Xueyuan, et al. Hydraulic fracturing simulation technology of shale gas reservoir and application of extended finite element method[J]. Natural Gas Geoscience, 2021, 32(1): 109-118.

    [29] HUANG Liuke, LIU Jianjun, ZHANG Fengshou, et al. 3D lattice modeling of hydraulic fracture initiation and near-wellbore propagation for different perforation models[J]. Journal of Petroleum Science and Engineering, 2020, 191: 107169.
    [30] ZHANG Feng-Shou, HUANG Liu-Ke, Yang Lin, et al. Numerical investigation on the effect of depletion-induced stress reorientation on infill well hydraulic fracture propagation[J]. Petroleum Science, 2022, 19: 296-308.
    [31] LUO Haoran, XIE Jun, HUANG Liuke, et al, Multiscale sensitivity analysis of hydraulic fracturing parameters based on dimensionless analysis method[J]. Lithosphere, 2022, 2022: 9708300.
    [32] HUANG Liuke, DONTSOV Egor, FU Haifeng, et al. Hydraulic fracture height growth in layered rocks: Perspective from DEM simulation of different propagation regimes[J]. International Journal of Solids and Structures, 2022, 238(1): 111395.
    [33] 翟鸿宇, 常旭, 朱维, 等.基于水力压裂实验的龙马溪组页岩各向异性特征研究[J].中国科学: 地球科学, 2021, 51(3): 380-397.

    ZHAI Hongyu, CHANG Xu, ZHU Wei, et al. Study on anisotropy of Longmaxi Shale using hydraulic fracturing experiment[J]. Scientia Sinica(Terrae), 2021, 51(3): 380-397.

    [34] HUANG Liuke, LIU Jianjun, ZHANG Fengshou, et al. Exploring the influence of rock inherent heterogeneity and grain size on hydraulic fracturing using discrete element modeling[J]. International Journal of Solids and Structures, 2019, 176-177(C): 207-220.
    [35] Dontsov E V. An approximate solution for a penny-shaped hydraulic fracture that accounts for fracture toughness, fluid viscosity and leak-off[J]. Royal Society open science, 2016, 3(12): 160737.
  • 期刊类型引用(14)

    1. 张铎,孙艺,赵得福,冶平,文虎,张首石. LN_2/CO_2复合制干冰对松散煤体降温特性. 西安科技大学学报. 2024(01): 23-33 . 百度学术
    2. 白洁琪,白纪成,梁运涛,王琳,宋双林,田富超. CF_3H和CO_2抑制CH_4爆炸实验研究. 煤矿安全. 2024(05): 122-130 . 本站查看
    3. 蔡春城,张喜龙,罗松涛,程根银. 孔庄煤矿7436工作面CO_2惰化技术参数优化. 华北科技学院学报. 2024(04): 43-48 . 百度学术
    4. 张俊杰,刘宇,蔡德芳,由洋. 大倾角工作面采空区均压-注氮联合防火数值模拟研究. 煤炭技术. 2024(09): 144-149 . 百度学术
    5. 石元来. 液态二氧化碳防火机理及远距离输送技术. 陕西煤炭. 2024(10): 44-49 . 百度学术
    6. 郑万成,王浩,邹祺,赵波. 惰性气体对煤低温氧化过程官能团变化影响研究. 能源与环保. 2024(12): 54-59+65 . 百度学术
    7. 王新航. 基于半无限大平板的干冰防火数值模拟. 能源与节能. 2023(03): 121-124 . 百度学术
    8. 郭明生,王文,程志斌. 自燃煤层切顶卸压沿空留巷防灭火技术研究. 煤炭技术. 2023(06): 117-122 . 百度学术
    9. 邓军,杨囡囡,王彩萍,陈功华,康付如,任立峰,崔小超,白光星. 采空区煤自燃“防-抑-灭”协同防灭火关键技术. 煤矿安全. 2022(09): 1-8 . 本站查看
    10. 王宇恒,史波波,赵鹏翔,翟小伟,白广余. 复合惰气在采空区遗煤中竞争吸附的分子动力学模拟研究. 中国安全生产科学技术. 2022(09): 82-88 . 百度学术
    11. 张毅. 亿欣煤业综采面切顶留巷采空区防灭火技术. 山东煤炭科技. 2021(09): 92-94+97 . 百度学术
    12. 荆蕊,王雪峰,乔玲,邓存宝,郝朝瑜,康延雷. 电厂烟气注入采空区防灭火技术的研究进展. 煤炭工程. 2021(11): 125-130 . 百度学术
    13. 付伟,胡浩,李继良,陆伟,张成涛,陈军,张鹏,孔彪,庄则栋. 杂质对矿井大高差液态CO_2管道输送的影响. 安全与环境工程. 2021(06): 78-83 . 百度学术
    14. 邓林峰. 高瓦斯不易自燃煤层综采面采空区高温隐患治理技术. 山西煤炭. 2021(04): 55-58 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  17
  • HTML全文浏览量:  0
  • PDF下载量:  9
  • 被引次数: 20
出版历程
  • 发布日期:  2023-05-19

目录

    /

    返回文章
    返回