• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

基于KPCA-GWO-SVM的矿井突水水源识别

华星月, 邵良杉

华星月, 邵良杉. 基于KPCA-GWO-SVM的矿井突水水源识别[J]. 煤矿安全, 2023, 54(2): 195-200.
引用本文: 华星月, 邵良杉. 基于KPCA-GWO-SVM的矿井突水水源识别[J]. 煤矿安全, 2023, 54(2): 195-200.
HUA Xingyue, SHAO Liangshan. Mine water inrush source identification model based on KPCA-GWO-SVM[J]. Safety in Coal Mines, 2023, 54(2): 195-200.
Citation: HUA Xingyue, SHAO Liangshan. Mine water inrush source identification model based on KPCA-GWO-SVM[J]. Safety in Coal Mines, 2023, 54(2): 195-200.

基于KPCA-GWO-SVM的矿井突水水源识别

Mine water inrush source identification model based on KPCA-GWO-SVM

  • 摘要: 为提高矿井突水水源识别的精准度,提出1种基于KPCA-GWO-SVM的矿井突水水源识别模型;该算法利用核主成分分析(KPCA)进行特征降维,加快水源识别速度,通过灰狼优化算法(GWO)搜寻支持向量机(SVM)的最优参数,使水源识别精准度更高;以赵各庄矿为研究对象,分析各含水层主要水化学类型,选取6种离子指标,经KPCA提取3个主成分,随机选取总样本量70%为训练集(共47组),30%作为预测集(共20组),构建KPCA-GWO-SVM模型并与KPCA-PSO-SVM、KPCA-WOA-SVM和KPCA-SVM模型对比。结果表明:KPCA-GWO-SVM的水源预测结果与实际结果一致,比未经KPCA处理模型的预测准确率高10%且寻优速度更快;与其他模型相比准确率最高,具有优越性。
    Abstract: In order to improve the accuracy of mine water inrush source identification, a KPCA-GWO-SVM-based mine water inrush source identification model is proposed. The algorithm uses kernel principal component analysis(KPCA) for feature dimension reduction to speed up water source identification, and searches for the optimal parameters of support vector machine(SVM) through graywolf optimization(GWO) algorithm to make water source identification more accurate. Taking Zhaogezhuang Mine as the research object, analyzing the main hydro-chemical types of each aquifer, selecting 6 ion indicators, extracting 3 principal components by KPCA, and randomly selecting 70% of the total sample size as the training set (47 groups in total), 30% as a prediction set(20 groups in total), the KPCA-GWO-SVM model was constructed and compared with the KPCA-PSO-SVM, KPCA-WOA-SVM and KPCA-SVM models. The results show that the water source prediction results of KPCA-GWO-SVM are consistent with the actual results, which is 10% higher than the prediction accuracy of the model without KPCA processing, and the optimization speed is faster. Compared with other models, the model proposed in this paper has the highest accuracy rate and has superiority.
  • [1] 靳德武.我国煤矿水害防治技术新进展及其方法论思考[J].煤炭科学技术,2017,45(5):141-147.

    JIN Dewu. New development of water diasater prevention and control technology in China coal mine and consideration on methodology[J]. Coal Science and Technology, 2017, 45(5): 141-147.

    [2] 周孟然,卞凯,胡锋,等.基于iPLS的矿井突水激光诱导荧光光谱特征波段筛选[J].光谱学与光谱分析,2019,39(7):2196-2201.

    ZHOU Mengran, BIAN Kai, HU Feng, et al. Selection of characteristic wave bands for laser induced fluorescence spectra of mine water inrush based on iPLS[J]. Spectroscopy and Spectral Analysis, 2019, 39(7): 2196-2201.

    [3] 袁文华,桂和荣.任楼煤矿地温特征及在水源判别中的应用[J].安徽理工大学学报(自然科学版),2005(4):9-11.

    YUAN Wenhua, GUI Herong. The characteristics of geothermal temperature and its application in distinguishing the source of water in Ren Lou Mine[J]. Journal of Anhui University of Science and Technology(Natural Science Edition), 2005(4): 9-11.

    [4] WANG Dandan, SHI Longqing. Source identification of mine water inrush: a discussion on the application of hydrochemical method[J]. Arabian Journal of Geoscie-nces, 2019, 12(2): 58.
    [5] 张许良,张子戌,彭苏萍.数量化理论在矿井突(涌)水水源判别中的应用[J].中国矿业大学学报,2003(3):42-45.

    ZHANG Xuliang, ZHANG Zixu, PENG Suping. Application of the second theory of quantification in identifying water sources of coal mines[J]. Journal of China University of Mining & Technology, 2003(3): 42-45.

    [6] 陈绍杰,刘久潭,汪锋,等.基于PCA-RA的滨海矿井水源识别技术研究[J].煤炭科学技术,49(2):217-225.

    CHEN Shaojie, LIU Jiutan, WANG Feng, et al. Technological research on water source identiftcation of coastal coalmines based on PCA-RA[J]. Coal Science and Technology, 2021, 49(2): 217-225.

    [7] 王甜甜,靳德武,刘基,等.动态权-集对分析模型在矿井突水水源识别中的应用[J].煤炭学报,2019,44(9):2840-2850.

    WANG Tiantian, JIN Dewu, LIU Ji, et al. Application of dynamic weight-set pair analysis model in mine water inrush discrimination[J]. Journal of China Coal Society, 2019, 44(9): 2840-2850.

    [8] 周孟然,宋红萍,胡锋,等.谱聚类结合LIF在矿井突水水源类型识别中的应用[J].光谱学与析,2021,41(2):435-440.

    ZHOU Mengran, SONG Hongping, HU Feng, et al. Application of spectral clustering and LIF in recognition of mine water inrush source types[J]. Spectroscopy and Spectral Analysis, 2021, 41(2): 435-440.

    [9] 纪卓辰,丁湘,侯恩科,等.纳林河二号煤矿涌水水源判别的PCA-Logistic方法[J].煤田地质与勘探,2020,48(5):97-105.

    JI Zhuochen, DING Xiang, HOU Enke, et al. The PCA-Logistic method for identification of water burst in Nalinhe No.2 coal mine[J]. Coal Geology & Exploration, 2020, 48(5): 97-105.

    [10] 邵良杉,詹小凡.基于IWOA-HKELM的矿井突水水源识别[J].中国安全科学学报,2019,29(9):113-118.

    SHAO Liangshan, ZHAN Xiaofan. Identification method of mine water inrush source based on IWOA-HKELM[J]. China Safety Science Journal, 2019, 29(9): 113-118.

    [11] 侯恩科,姚星,车晓阳,等.基于KPCA-APSO-ELM的矿井涌水水源识别[J].安全与环境学报:2022(1):64-71.

    HOU Enke, YAO Xing, CHE Xiaoyang, et al. Identification method of mine water inrush sources based on KPCA-APSO-ELM[J]. Journal of Safety and Environment, 2022(1): 64-71.

    [12] JIANG Qingchao, YAN Xuefeng. Parallel PCA KPCA for nonlinear process monitoring[J]. Control Engineering Practice, 2018(7): 17-25.
    [13] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69(3): 46-61.
    [14] 孙利源.基于灰色关联分析和PSO-SVM的煤与瓦斯突出预测应用研究[D].徐州:中国矿业大学,2019.
    [15] 董东林,陈昱吟,倪林根,等.基于WOA-ELM算法的矿井突水水源快速判别模型[J].煤炭学报,2021,46(3):984-993.

    DONG Donglin, CHEN Yuyin, NI Lingen, et al. Fast discriminant model of mine water inrush source based on WOA-ELM algorithm[J]. Journal of China Coal Society, 2021, 46(3): 984-993.

  • 期刊类型引用(1)

    1. 肖观红,鲁海峰. 基于PCA-GA-RF的矿井突水水源快速识别模型. 煤矿安全. 2024(06): 184-191 . 本站查看

    其他类型引用(1)

计量
  • 文章访问数:  22
  • HTML全文浏览量:  0
  • PDF下载量:  16
  • 被引次数: 2
出版历程
  • 发布日期:  2023-02-19

目录

    /

    返回文章
    返回