基于改进的SSA优化BP神经网络的导水断裂带高度预测
Prediction of height of water flowing fractured zone based on improved SSA to optimize BP neural network
-
摘要: 针对在采煤沉降灾变预警建模中导水断裂带高度难以准确预测的问题,提出一种基于改进麻雀搜索算法(SSA)优化BP神经网络的导水断裂带高度预测模型;为增强预测模型的全局搜索和逃离局部最优的能力,在标准SSA中加入Tent混沌映射初始化种群,提高种群分布的均匀性和多样性,并引入高斯变异、高斯扰动算法以及动态步长因子,提高SSA跳出局部最优的能力和求解精度;通过实践应用,将改进的SSA-BP与SSA-BP、PSO-BP、BP以及前人研究的GA-SVR模型预测结果进行对比。结果表明:基于改进的SSA-BP预测模型的平均绝对误差(MAE)、平均绝对百分比误差(MAPE)、均方根误差(RMSE)和决定系数(R2)分别为1.23 m、2.64%、1.51 m和0.985,均优于其它模型,提高了导水断裂带高度预测的准确性和稳定性。Abstract: Aiming at the problem that it is difficult to accurately predict the height of water flowing fractured zone in coal mining subsidence disaster early warning modeling, a prediction model based on improved sparrow search algorithm (SSA) to optimize BP neural network is proposed to predict the height of water flowing fractured zone. Add Tent chaotic mapping to the standard SSA to initialize the population, improve the uniformity and diversity of population distribution, and enhance the global search ability of SSA; with the help of Gaussian mutation and Gaussian perturbation algorithm, the ability of SSA to escape from local optimization is improved; dynamic step size is introduced to instead of random step size to improve the solution accuracy of SSA. Through practical application, the improved SSA-BP was compared with SSA-BP, PSO-BP, BP and the prediction results of GA-SVR model studied by predecessors. The results show that the average absolute error (MAE), average absolute percentage error (MAPE), root mean square error (RMSE) and determination coefficient(R2) of the improved SSA-BP prediction model are 1.23 m, 2.64%, 1.51 m and 0.985 respectively. It is better than other models and improves the accuracy of predicting the height of water flowing fractured zone.
-
-
[1] 寇规规.不同倾角下采煤沉陷规律及灾变预警研究[D].西安:西安科技大学,2020. [2] 施龙青,吴洪斌,李永雷,等.导水断裂带发育高度预测的PCA-GA-Elman优化模型[J].河南理工大学学报(自然科学版),2021,40(4):10-18. SHI Longqing, WU Hongbin, LI Yonglei, et al. Optimization model of PCA-GA-Elman for development height prediction of water-conducting fissure zone[J]. Journal of Henan Polytechnic University(Natural Science), 2021, 40(4): 10-18.
[3] 谭希鹏,施龙青,王娟,等.基于支持向量机的导水断裂带发育高度预测[J].煤矿安全,2014,45(8):46. TAN Xipeng, SHI Longqing, WANG Juan, et al. Forecast on development height of water flowing fractured zone based on support vector machine[J]. Safety in Coal Mines, 2014, 45(8): 46-49.
[4] 李振华,许延春,李龙飞,等.基于BP神经网络的导水断裂带高度预测[J].采矿与安全工程学报,2015,32(6):905-910. LI Zhenhua, XU Yanchun, LI Longfei, et al. Forecast of the height of water flowing fractured zone based on BP neural networks[J]. Journal of Mining & Safety Engineering, 2015, 32(6): 905-910.
[5] 谢晓锋,李夕兵,尚雪义,等.PCA-BP神经网络模型预测导水裂隙带高度[J].中国安全科学学报,2017, 27(3):100-105. XIE Xiaofeng, LI Xibing, SHANG Xueyi, et al. Prediction of height of water flowing fractured zone based on PCA-BP neural networks model[J]. China Safety Science Journal, 2017, 27(3): 100-105.
[6] 娄高中,谭毅.基于PSO-BP神经网络的导水裂隙带高度预测[J].煤田地质与勘探,2021,49(4):198-204. LOU Gaozhong, TAN Yi. Prediction of the height of water flowing fractured zone based on PSO-BP neural network[J]. Coal Geology & Exploration, 2021, 49(4): 198-204.
[7] 高雪峰,李庆奎.基于SSA-Elman的非线性系统辨识[J].信息技术与信息化,2021(8):156-158. GAO Xuefeng, LI Qingkun. Nonlinear system identification based on SSA Elman[J]. Information Technology and informatization, 2021(8): 156-158.
[8] 孙其昌,朱正礼,张福全.基于改进SSA优化WSN分簇协议[J].无线电通信技术,2022,48(1):132-139. SUN Qichang, ZHU Zhengli, ZHANG Fuquan. Optimizing WSN clustering rotocol based on improved SSA[J]. Radio Communications Technology, 2022, 48(1):132-139.
[9] XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8: 22-34. [10] 李鹏,丁倩雯.基于麻雀算法优化的OSTU分割算法[J].电子测量技术,2021,44(19):148-154. LI Peng, DING Qianwen. OSTU segmentation algorithm based on sparrow algorithm optimization[J]. Electronic Measurement Technology, 2021, 44(19): 148-154.
[11] 熊智,李欣童,熊骏,等.基于改进麻雀搜索算法的无人机集群置信传播协同定位方法[J].中国惯性技术学报,2021,29(2):171-177. XIONG Zhi, LI Xintong, XIONG Jun, et al. Cooperative positioning method for UAV swarm belief propagation based on improved sparrow search algorithm[J]. Journal of Chinese Inertial Technology, 2021, 29(2): 171-177.
[12] 张娜,赵泽丹,包晓安,等.基于改进的Tent混沌万有引力搜索算法[J].控制与决策,2020,35(4):893-900. ZHANG Na, ZHAO Zedan, BAO Xiaoan, et al. Gravitational search algorithm based on improved Tent chaos[J]. Control and Decision, 2020, 35(4): 893-900.
[13] 吕鑫,慕晓冬,张钧,等.混沌麻雀搜索优化算法[J].北京航空航天大学学报,2021,47(8):1712-1720. LU Xin, MU Xiaodong, ZHANG Jun, et al. Chaos sparrow search optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1712-1720.
[14] 尹德鑫,张达敏,蔡朋宸,等.改进的麻雀搜索优化算法及其应用[J].计算机工程与科学,2022,44(10):1844-1851. YIN Dexin, ZHANG Damin, CAI Pengchen, et al. Improved sparrows search optimization algorithm andits application[J]. Computer-Engineering & Science, 2022, 44(10): 1844-1851.
[15] 施龙青,张荣遨,韩进,等.基于GWO改进的PCA-BP神经网络煤层底板破坏深度预测模型[J].矿业研究与开发,2020,40(2):88-93. SHI Longqing, ZHANG Rongao, HAN Jin, et al. Prediction model of failure depth of coal seam floor based on PCA-BP neural network improved by GWO[J]. Mining Research and Development, 2020, 40(2): 88-93.
[16] 国家煤矿安全监察局.煤矿防治水细则[M].北京:煤炭工业出版社,2018. [17] 邵良杉,周玉.QGA-RFR模型在导水裂隙带高度预测中的应用[J].中国安全科学学报,2018,28(3):19-24. SHAO Liangshan, ZHOU Yu. Application of QGA-RFR model in prediction of height of water flowing fractured zone[J]. China Safety Science Journal, 2018, 28(3): 19-24.
[18] 曹丁涛,李文平.煤矿导水裂隙带高度计算方法研究[J].中国地质灾害与防治学报,2014,25(1):63-69. CAO Dingtao, LI Wenping. Estimation method for height of fratured zone with water flow in coal mining area[J]. The Chinese Journal of Geological Hazard and Control, 2014, 25(1): 63-69.
[19] 毛志勇,赖文哲,黄春娟.基于APSO-LSSVM模型的导水裂隙带高度预测[J].辽宁工程技术大学学报(自然科学版),2020,39(1):34-40. MAO Zhiyong, LAI Wenzhe, HUANG Chunjuan. Prediction of height of water flowing fractured zone based on APSO LSSVM model[J]. Journal of Liaoning Technical University(Natural Science), 2020, 39(1): 34-40.
[20] 郭文兵,娄高中.覆岩破坏充分采动程度定义及判别方法[J].煤炭学报,2019,44(3):755-766. GUO Wenbing, LOU Gaozhong. Definition and distinguishing method of critical mining degree of overburden failure[J]. Journal of China Coal Society, 2019, 44(3): 755-766.
[21] 柴华彬,张俊鹏,严超.基于GA-SVR的采动覆岩导水裂隙带高度预测[J].采矿与安全工程学报,2018, 35(2):359-365. CHAI Huabin, ZHANG Junpeng, YAN Chao. Prediction of water-flowing height in fractured zone of overburden strata based on GA-SVR[J]. Journal of Mining & Safety Engineering, 2018, 35(2): 359-365.
[22] 邵毅明,甘元艺,侯雨彤,等.基于交通流数据修复的GA-RF方法研究[J].重庆理工大学学报(自然科学),2021,35(6):29-36. SHAO Yiming, GAN Yuanyi, HOU Yutong, et al. Research on GA-RF method based on traffic flow data bestoration[J]. Journal of Chongqing University of Te-chnology(Natural Science), 2021, 35(6): 29-36.
[23] 彭潮,兰彦冰,邹春,等.煤粉富氧燃烧着火温度预测的优化随机森林(GA-RF)模型[J].洁净煤技术,2020,26(1):71-76. PENG Chao, LAN Yanbing, ZHOU Chun, et al. Prediction of ignition temperature of pulverized coal under oxy-fuel combustion condition based on optimized random forest(GA-RF)model[J]. Clean Coal Technology,2020, 26(1): 71-76.
-
期刊类型引用(1)
1. 肖观红,鲁海峰. 基于PCA-GA-RF的矿井突水水源快速识别模型. 煤矿安全. 2024(06): 184-191 . 本站查看
其他类型引用(1)
计量
- 文章访问数: 24
- HTML全文浏览量: 2
- PDF下载量: 22
- 被引次数: 2