基于Bayes判别分析模型的风化基岩富水性预测
Prediction of water enrichment of weathered bedrock based on Bayes discriminant model
-
摘要: 风化基岩含水层是陕北侏罗纪煤田煤炭开采的主要充水含水层,风化基岩含水层富水性的分区预测是矿井防治水的关键。以红柳林井田中西部为研究区,在分析影响风化基岩富水性控制因素的基础上,选取了风化基岩厚度、岩心采取率、风化程度、岩性组合、风化基岩顶面标高以及砂基比6个因素作为判别指标,以研究区内41组有效风化基岩钻孔抽水试验数据以3∶1的随机分配方式作为训练样本及验证样本,构建了富水性Bayes判别分析模型;采用该模型对红柳林井田中西部未进行过抽水试验钻孔的风化基岩富水性类别进行了预测,得到了风化基岩富水性预测图。结果表明:研究区西一盘区内整体富水性相对较强,强富水性区空间分布不均;北二盘区及南二盘区大部分区域富水性相对较弱;极弱富水性区分布于东南部。通过与实际生产中工作面涌水量及出水点位置对比,该富水性分区预测结果与实际吻合。predict the water richness category of weathered bedrock that has not been drilled for pumping test in the central and western part of Hongliulin Minefield, and the water richness prediction diagram of weathered bedrock is obtained. The results show that the overall water-rich water in the western first panel of the study area is relatively strong, and the spatial distribution of strong water-rich area is uneven. Most areas of the north second panel and the south second panel have relatively weak water richness, and the extremely weak water rich areas are distributed in the southeast. By comparing with the actual production of the working face water inflow and the location of the water outlet point, the prediction result of the water-rich zone is consistent with the actual situation.
-
关键词:
- 风化基岩 /
- 富水性 /
- Bayes判别分析法 /
- 风化基岩顶面标高 /
- 矿井防治水
Abstract: Weathered bedrock aquifer is the main water-filled aquifer for coal mining in Jurassic coalfields in northern Shaanxi. The regional prediction of the water richness of weathered bedrock aquifer is the key to mine water control. Taking the central and western part of Hongliulin Minefield as the research area, based on the analysis of the factors affecting the water-richness of the weathered bedrock, the thickness of the weathered bedrock, the core removal rate, the degree of weathering, the combination of lithology, the top elevation of the weathered bedrock and the sand base ratio are selected to use as the discriminant indexes, 41 groups of effective weathered bedrock borehole pumping test data in the study area are used as training samples and verification samples with a 3∶1 random allocation method to construct a water-rich Bayes discriminant analysis model. This model is used to -
-
[1] 侯恩科,谢晓深,王双明,等.中深埋厚煤层开采地下水位动态变化规律及形成机制[J].煤炭学报,2021, 46(5):1404-1416. HOU Enke, XIE Xiaoshen, WANG Shuangming, et al. Dynamic law and mechanism of groundwater induced by medium-deep buried and thick coal seam mining[J]. Journal of China Coal Society, 2021, 46(5): 1404-1416.
[2] 王双明,孙强,乔军伟,等.论煤炭绿色开采的地质保障[J].煤炭学报,2020,45(1):8-15. WANG Shuangming, SUN Qiang, QIAO Junwei, et al. Geological guarantee of coal green mining[J]. Journal of China Coal Society, 2020, 45(1): 8-15.
[3] 范立民,马雄德,李永红,等.西部高强度采煤区矿山地质灾害现状与防控技术[J].煤炭学报,2017,42(2):276-285. FAN Limin, MA Xiongde, LI Yonghong, et al. Geological disasters and control technology in high intensity mining area of western China[J]. Journal of China Coal Society, 2017, 42(2): 276-285.
[4] 姬中奎.柠条塔矿S1210工作面突水条件分析[J].煤矿安全,2014,45(8):188-191. JI Zhongkui. Analysis on water inrush condition of S1210 working face in Ningtiaota Coal Mine[J]. Safety in Coal Mines, 2014, 45(8): 188-191.
[5] 吴群英,胡雄武,王宏科.陕北矿区地下水资源地面瞬变电磁法探查实践[J].煤炭科学技术,2020,50(5):208-215. WU Qunying, HU Xiongwu, WANG Hongke. Exploration practice of ground transient electromagnetic method for groundwater resources in Northern Shaanxi Coal Mining Area[J]. Coal Science and Technology, 2020, 50(5): 208-215.
[6] 李文.煤矿采空区地面综合物探方法优化研究[J].煤炭科学技术,2017,45(1):194-199. LI Wen. Optimization study of surface comprehensive geophysical detection methods of coal mine goafs[J]. Coal Science and Technology, 2017, 45(1): 194-199.
[7] 侯恩科,樊江伟,高利军,等.地面核磁共振技术在隐伏火烧区富水性探测中的应用[J].煤田地质与勘探,2021,49(5):230-237. HOU Enke, FAN Jiangwei, GAO Lijun, et al. Application of surface nuclear magnetic resonance technology in detecting water abundance in concealed burnt zone[J]. Coal Geology & Exploration, 2021, 49(5): 230-237.
[8] 张军,张涛,王信文.巷道围岩低阻体矿井音频电透视探测校正方法研究[J].煤炭科学技术,2020,48(11):182-190. ZHANG Jun, ZHANG Tao, WANG Xinwen. Research on correction method of audio frequency electric perspective detection for low resistivity body in surrounding rock of roadway[J]. Coal Science and Technology, 2020, 48(11): 182-190.
[9] 张池,王鹏飞.烧变岩及风化基岩层富水性探查[J].煤炭技术,2018,37(3):175-177. ZHANG Chi, WANG Pengfei. Study on water-richness of burnt rock and weathered bedrock[J]. Coal Technology, 2018, 37(3): 175-177.
[10] 武强,樊振丽,刘守强,等.基于GIS的信息融合型含水层富水性评价方法—富水性指数法[J].煤炭学报,2011,36(7):1124-1128. WU Qiang, FAN Zhenli, LIU Shouqiang, et al. Water-richness evaluation method of water-filled aquifer based on the principle of information fusion with GIS: Water-richness index method[J]. Journal of China Coal Society, 2011, 36(7): 1124-1128.
[11] 魏久传,赵智超,谢道雷,等.基于岩性及结构特征的砂岩含水层富水性评价[J].山东科技大学学报(自然科学版),2020,39(3):13-23. WEI Jiuchuan, ZHAO Zhichao, XIE Daolei, et al. Water-abundance evaluation of sandstone aquifer based on lithologic and structural characteristics[J]. Journal of Shandong University of Science and Technology(Natural Science), 2020, 39(3): 13-23.
[12] 侯恩科,纪卓辰,车晓阳,等.基于改进AHP和熵权法耦合的风化基岩富水性预测方法[J].煤炭学报,2019,44(10):3164-3173. HOU Enke, JI Zhuochen, CHE Xiaoyang, et al. Water abundance prediction method of weathered bedrock based on improved AHP and the entropy weight method[J]. Journal of China Coal Society, 2019, 44(10): 3164-3173.
[13] 刘少伟,李文平,刘强强.层次权重模糊聚类分析法在煤层顶板富水性预测中的应用[J].煤炭技术,2017,36(2):208-210. LIU Shaowei, LI Wenping, LIU Qiangqiang. Application of analytic hierarchy process fuzzy clustering analysis method for mine water disaster[J]. Coal Technology, 2017, 36(2): 208-210.
[14] 付萍杰,魏久传,谢道雷,等.基于多因素模糊聚类分析法的底板突水危险性评价[J].煤炭技术,2015,34(1):163-166. FU Pingjie, WEI Jiuchuan, XIE Daolei, et al. Risk evaluation of water inrush from seam floor based on multifactor fuzzy clustering analysis[J]. Coal Technology, 2015, 34(1): 163-166.
[15] 申宝宏,刘天泉.模糊集合理论及其在煤炭科研中的应用[J].煤炭科学技术,1988(5):44-48. [16] 侯恩科,童仁剑,王苏健,等.陕北侏罗纪煤田风化基岩富水性Fisher模型预测方法[J].煤炭学报,2016, 41(9):2312-2318. HOU Enke, TONG Renjian, WANG Sujian, et al. Prediction method for the water enrichment of weathered bedrock based on Fisher model in Northern Shaanxi Jurassic coal-field[J]. Journal of China Coal Society, 2016, 41(9): 2312-2318.
[17] 侯恩科,闫鑫,郑永飞,等.Bayes判别模型在风化基岩富水性预测中的应用[J].西安科技大学学报,2019,39(6):942-949. HOU Enke, YAN Xin, ZHENG Yongfei, et al. Application of Bayes discriminant model in prediction of water enrichment of weathered bedrock[J]. Journal of Xi’an University of Science and Technology, 2019, 39(6): 942-949.
[18] 许珂.台格庙矿区顶板涌(突)水危险性评价与矿井涌水量预测[D].北京:中国矿业大学(北京),2016. [19] 董书宁,刘其声.华北型煤田中奥陶系灰岩顶部相对隔水段研究[J].煤炭学报,2009,34(3):289-292. DONG Shuning, LIU Qisheng. Study on relative aguic-lude existed in mid-Ordovician limestone top in North China coal field[J]. Journal of China Coal Society, 2009, 34(3): 289-292.
[20] 文畅平.基于Bayes判别分析法的冲击地压预测与危险性分级[J].自然灾害学报,2015,24(5):229. WEN Changping. Prediction and hazard classification of bumping geopressure based on Bayes discriminant analysis method[J]. Journal of Natural Disasters, 2015, 24(5): 229-236.
[21] 文畅平.岩体质量分级的Bayes判别分析方法[J].煤炭学报,2008,33(4):395-399. WEN Changping. Bayes discriminant analysis method of rock-mass quality classification[J]. Journal of China Coal Society, 2008, 33(4): 395-399.
[22] 史秀志,周健,郑纬,等.边坡稳定性预测的Bayes判别分析方法及应用[J].四川大学学报(工程科学版),2010,42(3):63-68. SHI Xiuzhi, ZHOU Jian, ZHENG Wei, et al. Bayes discriminant analysis method and its application for prediction of slope stability[J]. Journal of Sichuan University(Engineering Science Edition), 2010, 42(3): 63-68.
-
期刊类型引用(1)
1. 代业滨,张义安. 龙王沟煤矿水害隐患普查治理技术及经验. 中国煤炭. 2022(S2): 35-42 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 21
- HTML全文浏览量: 0
- PDF下载量: 16
- 被引次数: 2