• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

淮南矿区A组煤开采工作面底板破坏带深度确定

李连崇, 姚成宇, 魏廷双, 汪敏华, 刘晓国, 余国锋, 牟文强

李连崇, 姚成宇, 魏廷双, 汪敏华, 刘晓国, 余国锋, 牟文强. 淮南矿区A组煤开采工作面底板破坏带深度确定[J]. 煤矿安全, 2022, 53(1): 212-218.
引用本文: 李连崇, 姚成宇, 魏廷双, 汪敏华, 刘晓国, 余国锋, 牟文强. 淮南矿区A组煤开采工作面底板破坏带深度确定[J]. 煤矿安全, 2022, 53(1): 212-218.
LI Lianchong, YAO Chengyu, WEI Tingshuang, WANG Minhua, LIU Xiaoguo, YU Guofeng, MU Wenqiang. Depth determination of floor crack zone in coal mining face of Group A in Huainan Mining Area[J]. Safety in Coal Mines, 2022, 53(1): 212-218.
Citation: LI Lianchong, YAO Chengyu, WEI Tingshuang, WANG Minhua, LIU Xiaoguo, YU Guofeng, MU Wenqiang. Depth determination of floor crack zone in coal mining face of Group A in Huainan Mining Area[J]. Safety in Coal Mines, 2022, 53(1): 212-218.

淮南矿区A组煤开采工作面底板破坏带深度确定

Depth determination of floor crack zone in coal mining face of Group A in Huainan Mining Area

  • 摘要: 淮南矿区生产矿井已开采受深部高承压水严重威胁的A组煤,为了解决传统煤层底板采动破坏深度经验公式适用性差的问题;基于淮南矿区生产地质参数,利用统计软件SPSS分析了各类参数的偏相关性,优化了传统破坏深度计算公式,并将拟合公式应用于张集煤矿1612A工作面底板破坏的计算;基于数值模拟、微震监测对公式演算的准确性进行了验证。研究结果表明:煤层厚度等参数与破坏带深度具有相关性;通过拟合得到的新型计算公式计算工作面破坏深度达到27.33 m,与注水试验测得破坏带深度28 m、数值计算深度30 m相吻合;与利用现场监测的微震事件聚集分布得到的底板微破裂集中深度30~35 m相一致。
    Abstract: The production mines of Huainan Mining Area have already mined Group A coal, which is seriously threatened by deep high-pressure water, in order to solve the problem of the applicability of the traditional coal seam floor mining failure depth empirical formula, based on the production geological parameters of the Huainan Mining Area, the statistical software SPSS is used to analyze the partial correlation of various parameters, optimize the traditional damage depth calculation formula, and apply the fitting formula to the calculation of the floor damage of the 1612A working face in Zhangji Coal Mine; based on numerical simulation and micro-seismic monitoring are used to verify the accuracy of the formula calculation. The research results show that the coal seam thickness and other parameters are related to the depth of the fissure zone; a new calculation formula is obtained by fitting, and the calculated failure depth of the working face reaches 27.33 m, which is consistent with the fracture zone depth of 28 m measured by water injection test and 30 m calculated by numerical method; the concentration and distribution of micro-seismic events monitored on site are used to obtain a concentration depth of 30-35 m for the micro-fracture of the bottom plate.
  • [1] 张志巍,张玉军,张风达.采动与隐伏断层双重作用下底板破坏特征[J].煤矿安全,2021,52(1):194-199.

    ZHANG Zhiwei, ZHANG Yujun, ZHANG Fengda. Characteristics of floor failure under the double action of mining and hidden faults[J]. Safety in Coal Mines, 2021, 52(1): 194-199.

    [2] Penghai Zhang, Tianhong Yang, Qinglei Yu, et al. Study of a Seepage Channel Formation Using the Combination of Microseismic Monitoring Technique and Numerical Method in Zhangmatun Iron Mine[J]. Rock mechanics and rock engineering, 2016, 49: 3699.
    [3] 鲁晶津,王冰纯,颜羽.矿井电法在煤层采动破坏和水害监测中的应用进展[J].煤炭科学技术,2019,47(3):18-26.

    LU Jingjin, WANG Bingchun, YAN Yu. Advances of mine electrical resistivity method applied in coal seam mining destruction and water inrush monitoring[J]. Coal Science and Technology, 2019, 47(3): 18-26.

    [4] 赵家巍,周宏伟,薛东杰,等.深部承压水上含隐伏构造煤层底板渗流路径扩展规律[J].煤炭学报,2019, 44(6):1836-1845.

    ZHAO Jiawei, ZHOU Hongwei, XUE Dongjie, et al. Expansion law of seepage path in the concealed structural floor of coal seam in deep confined water[J]. Journal of China Coal Society, 2019, 44(6): 1836-1845.

    [5] 李江华,许延春,谢小锋,等.采高对煤层底板破坏深度的影响[J].煤炭学报,2015,40(S2):303.

    LI Jianghua, XU Yanchun, XIE Xiaofeng, et al. Influence of mining height on coal seam floor failure depth[J]. Journal of China Coal Society, 2015, 40(S2): 303.

    [6] 陈从磊,姚多喜,赵魁,等.基于灰色神经网络预测青东矿10煤层底板破坏深度[J].煤炭技术,2012,31(11):49-51.

    CHEN Conglei, YAO Duoxi, ZHAO Kui, et al. Floor 10 damage depth of Green East Coal Mine based on grey neural network[J]. Coal Technology, 2012, 31(11): 49.

    [7] 张文泉,赵凯,张贵彬,等.基于灰色关联度分析理论的底板破坏深度预测[J].煤炭学报,2015,40(S1):53-59.

    ZHANG Wenquan, ZHAO Kai, ZHANG Guibin, et al. Prediction of floor failure depth based on grey correlation analysis theory[J]. Journal of China Coal Society, 2015, 40(S1): 53-59.

    [8] 胡彦博.深部开采底板破裂分布动态演化规律及突水危险性评价[D].徐州:中国矿业大学,2020.
    [9] 王悦,于水,王苏健,等.微震监测技术在煤矿底板突水预警中的应用[J].煤炭科学技术,2018,46(8):68.

    WANG Yue, YU Shui, WANG Sujian, et al. Application of microseismic monitoring technology in water inrush warning of coal mine floor[J]. Coal Science and Technology, 2018, 46(8): 68.

    [10] 原富珍,马克,庄端阳,等.基于微震监测的董家河煤矿底板突水通道孕育机制[J].煤炭学报,2019,44(6):1846-1856.

    YUAN Fuzhen, MA Ke, ZHUANG Duanyang, et al. Preparation mechanism of water inrush channels in bottom floor of Dongjiahe Coal Mine based on micro-seismic monitoring[J]. Journal of China Coal Society, 2019, 44(6): 1846-1856.

    [11] 刘晓国,魏廷双,余国锋,等.张集煤矿突水危险域微震监测系统应用[J].煤矿安全,2020,51(3):111.

    LIU Xiaoguo, WEI Tingshuang, YU Guofeng, et al. Application of micro-seismic monitoring system in dangerous area of water inrush in Zhangji Coal Mine[J]. Safety in Coal Mines, 2020, 51(3): 111.

    [12] 王琳,王广宏.采场底板破坏特征数值模拟[J].煤矿安全,2015,46(7):211-214.

    WANG Lin, WANG Guanghong. Numerical simulation on failure characteristics of mining coal seam floor[J]. Safety in Coal Mines, 2015, 46(7): 211-214.

    [13] 李连崇,唐春安,李根,等.含隐伏断层煤层底板损伤演化及滞后突水机理分析[J].岩土工程学报,2009, 31(12):1838-1844.

    LI Lianchong, TANG Chunan, LI Gen, et al. Damage evolution and delayed groundwater inrush from micro faults in coal seam floor[J]. Chinese Journal of Geotech-nical Engineering, 2009, 31(12): 1838-1844.

    [14] 宋文成,梁正召.承压水上开采倾斜底板破坏特征与突水危险性分析[J].岩土力学,2020,41(2):624.

    SONG Wencheng, LIANG Zhengzhao. Investigation on failure characteristics and water inrush risk of inclined floor mining above confined aquifer[J]. Rock and Soil Mechanics, 2020, 41(2): 624.

    [15] 刘伟韬,穆殿瑞,杨利,等.倾斜煤层底板破坏深度计算方法及主控因素敏感性分析[J].煤炭学报,2017, 42(4):849-859.

    LIU Weitao, MU Dianrui, YANG Li, et al. Calculation method and main factor sensitivity analysis of inclined coal floor damage depth[J]. Journal of China Coal Society, 2017, 42(4): 849-859.

    [16] 杜伟升,姜耀东,高林涛.带压开采底板破坏因素分析及突水预测研究[J].煤炭科学技术,2017,45(6):112-117.

    DU Weisheng, JIANG Yaodong, GAO Lintao. Study on water inrush prediction and floor failure factors analysis in pressurized coal mining[J]. Coal Science and Technology, 2017, 45(6): 112-117.

    [17] 柳东明.利民矿16煤首采工作面底板破裂带分布规律[J].煤矿安全,2020,51(5):235-238.

    LIU Dongming. Distribution law of floor fracture zone of No.16 coal mining face in Limin Coal Mine[J]. Safety in Coal Mines, 2020, 51(5): 235-238.

    [18] 李彩惠.东庞矿下组煤薄隔水层底板破坏深度模拟研究[J].煤矿安全,2014,45(7):26-29.

    LI Caihui. Simulation study for floor failure depth of lower coal group thin aquifuge in Dongpang Coal Mine[J]. Safety in Coal Mines, 2014, 45(7): 26-29.

    [19] 国家煤炭工业局.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[M].北京:煤炭工业出版社,2020.
    [20] 施龙青,徐东晶,邱梅,等.采场底板破坏深度计算公式的改进[J].煤炭学报,2013,38(S2):299-303.

    SHI Longqing, XU Dongjing, QIU Mei, et al. Improved on the formula about the depth of damaged floor in working area[J]. Journal of China Coal Society, 2013, 38(S2): 299-303.

    [21] Qinglong Zhou, Juan Herrera, Arturo Hidalgo. The Numerical Analysis of Fault-Induced Mine Water Inrush Using the Extended Finite Element Method and Fracture Mechanics[J]. MineWater & the Environment, 2018, 37(4): 185-195.
    [22] Lele Xiao, Qiang Wu, Chao Niu, et al. Application of a new evaluation method for foor water inrush risk from the Ordovician fissure confined aquifer in Xiayukou coal mine, Shanxi, China[J]. Carbonates and Evaporites, 2020, 35(3): 97.
    [23] 尹会永,翟玉涛,赵翠月,等.我国矿井断层防水煤(岩)柱留设研究现状与展望[J].煤矿安全,2020,51(5):187-191.

    YIN Huiyong, ZHAI Yutao, ZHAO Cuiyue, et al. Research status and prospect of fault waterproof coal(rock)column design in China[J]. Safety in Coal Mines, 2020, 51(5): 187-191.

    [24] 王进尚,郭俊,辛崇伟,等.基于高精度微震监测技术的底板破坏深度预测研究[J].煤炭技术,2020,39(4):67-70.

    WANG Jinshang, GUO Jun, XIN Chongwei, et al. Study on prediction of bottom floor failure depth based on highprecision microseismic monitoring technology[J]. Coal Technology, 2020, 39(4): 67-70.

    [25] 高亮.采面过封闭不良钻孔防治水措施[J].煤矿安全,2018,49(S1):81-84.

    GAO Liang. Water prevention and control countermeasures for working face passing through poor sealing drilling[J]. Safety in Coal Mines, 2018, 49(S1): 81-84.

    [26] 刘伟韬,曹光全,申建军,等.底板采动破坏深度实测与模拟[J].辽宁工程技术大学学报(自然科学版),2013,32(12):1585-1589.

    LIU Weitao, CAO Guangquan, SHEN Jianjun, et al. Field measurement and simulation research on floor failure depth[J]. Journal of Liaoning Technical University(Natural Science), 2013, 32(12): 1585-1589.

  • 期刊类型引用(9)

    1. 陈太勇,刘国磊,常笑笑,吴延成,马秋峰,郝喜庆,赵成博. 采场正断层损伤活化机理与特征. 煤矿安全. 2025(02): 126-136 . 本站查看
    2. 梁文昭,刘国磊,郑寓超,王峰,孟圣师,崔嵛,马秋峰. 深部构造区大倾角工作面回撤致冲机理及防治技术. 煤矿安全. 2024(03): 127-138 . 本站查看
    3. 赵立松,周金艳. 瓦斯抽采地质异常区微震响应规律研究. 煤炭工程. 2024(03): 96-101 . 百度学术
    4. 黄刚,韩云春,余国锋,罗勇,任波,叶赞,王立超,赵靖,徐一帆. 全光纤微震监测技术在底板突水监测中的应用研究. 工矿自动化. 2024(06): 36-45 . 百度学术
    5. 余国锋,韩云春,任波,魏廷双,郑群,汪洋,牟文强. 基于微震监测的底板陷落柱注浆围岩体采动破坏研究. 煤矿安全. 2024(12): 206-213 . 本站查看
    6. 于善帅. 煤矿井下震动信号主频分布特征研究. 现代矿业. 2023(06): 230-233 . 百度学术
    7. 裴艳龙. 综采工作面过断层顶板控制技术研究与应用. 机械管理开发. 2023(10): 279-280+283 . 百度学术
    8. 韦永豪,王振伟,李斌,王智涛,李元浩,弓启祥. 开采-渗流耦合作用下含正断层露天矿边坡变形规律研究. 露天采矿技术. 2023(06): 21-25 . 百度学术
    9. 林喜康,游新天. 紫金山金铜矿地下开采微震活动规律研究. 中国矿业. 2023(12): 170-176 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  144
  • HTML全文浏览量:  0
  • PDF下载量:  15
  • 被引次数: 10
出版历程
  • 发布日期:  2022-01-19

目录

    /

    返回文章
    返回