东周窑井田多尺度三维地质建模
Multi-scale 3D geological modeling of Dongzhouyao Coal Mine
-
摘要: 构建了东周窑井田地质信息库;利用DepthInsight三维建模软件将东周窑井田作为研究对象,采用断层交切处理、“小层建模”、三角网格剖分、截断网格剖分等技术构建了东周窑井田多尺度三维地质模型。井田尺度模型以三维的形式概括性展示井田内的构造,并在此基础上采用克里金算法进行插值计算,预测出山4#、5#煤层中火成岩的分布;地震勘探区尺度模型揭示了此区域煤层形态以及构造特征,在此模型的基础上对8402、8403等8个规划工作面进行模拟,实现了地下构造可视化;工作面尺度模型是精度最高的模型,以8100工作面为例探索了工作面高精度三维地质建模及动态更新的方法。
-
关键词:
- 东周窑井田 /
- 地质信息数据库 /
- DepthInsight /
- 三维地质模型 /
- 动态更新
Abstract: The geological information database of Dongzhouyao Mine Field was built. Taking Dongzhouyao Coal Mine as the research object by using DepthInsight 3D modeling software, and complicated structure, three different scales of 3D geological models were constructed by using techniques such as “fault intersection treatment”, “small layer modeling”, “Delaunay triangulation grid” and “truncated mesh generation”. The mine field-scale model generally displays the structure in the minefield in three-dimensional form. Based on it, the Kriging algorithm is used for interpolation calculation to predict the distribution of igneous in Shan 4# and 5# coal seams; the scale model of seismic exploration area reveals the coal seam morphology and structural characteristics in this area. Based on this model, 8 planned working faces such as 8402 and 8403 are simulated to realize the visualization of underground structure; the working face scale model is the most accurate model. Taking 8100 face as an example, the method of high-precision 3D geological modeling and dynamic updating of working face is explored. -
-
[1] 毛善君,崔建军,令狐建设,等.透明化矿山管控平台的设计与关键技术[J].煤炭学报,2018,43(12):3539-3548.MAO Shanjun, CUI Jianjun, LINGHU Jianshe, et al. System design and key technology of transparent mine management and control platform[J]. Journal of China Coal Society, 2018, 43(12): 3539-3548. [2] 赵毅鑫,刘文超,张村,等.近距离煤层蹬空开采围岩应力及裂隙演化规律[J].煤炭学报,2022,47(1):259-273. ZHAO Yixin, LIU Wenchao, ZHANG Cun, et al. Stress and fracture evolution of surrounding rock during mining above mined out area in contiguous coal seams[J]. Journal of China Coal Society, 2022, 47(1): 259-273.
[3] 彭苏萍.我国煤矿安全高效开采地质保障系统研究现状及展望[J].煤炭学报,2020,45(7):2331-2345. PENG Suping. Current status and prospects of research on geological assurance system for coal mine safe and high efficient mining[J]. Journal of China Coal Society, 2020, 45(7): 2331-2345.
[4] 王国法,王虹,任怀伟,等.智慧煤矿2025情景目标和发展路径[J].煤炭学报,2018,43(2):295-305. WANG Guofa, WANG Hong, REN Huaiwei, et al. 2025 scenarios and development path of intelligent coal mine[J]. Journal of China Coal Society, 2018, 43(2): 295-305.
[5] 王国法,杜毅博.智慧煤矿与智能化开采技术的发展方向[J].煤炭科学技术,2019,47(1):1-10. WANG Guofa, DU Yibo. Development direction of intelligent coal mine and intelligent mining technology[J]. Coal Science and Technology, 2019, 47(1): 1-10.
[6] 王国法.煤矿智能化最新技术进展与问题探讨[J].煤炭科学技术,2020,50(1):1-27. WANG Guofa. Discussion on latest technological progress and problem of coal mine intelligence[J]. Coal Science and Technology, 2022, 50(1): 1-27.
[7] 刘结高,程建远,疏义国,等.唐家会煤矿透明地质保障系统构建及示范[J].煤田地质与勘探,2022,50(1):1-9. LIU Jiegao, CHENG Jianyuan, SHU Yiguo, et al. Construction and demonstration of the transparent geological guarantee system in Tangjiahui Coal Mine[J]. Coal Geology & Exploration, 2022, 50(1): 1-9.
[8] 韩建国.神华智能矿山建设关键技术研发与示范[J].煤炭学报,2016,41(12):3181-3189. HAN Jianguo. Key technology research and demonstration of intelligent mines in Shenhua Group[J]. Journal of China Coal Society, 2016, 41(12): 3181-3189.
[9] 黄蕾蕾.内蒙古乌努格吐山矿山高精度三维地质建模与评价[D].北京:中国地质大学(北京),2020. [10] 刘安强,王子童.煤矿三维地质建模相关技术综述[J].能源与环保,2020,42(8):136-141. LIU Anqiang, WANG Zitong. Overview of 3D geological modeling technology in coal mine[J]. China Energy and Environmental Protection, 2020, 42(8): 136-141.
[11] 张兵兵,喻鸿,张中雷,等.露天矿山采剥施工的数字化精细管理实践[J].黄金科学技术,2019,27(4):621-628. ZHANG Bingbing, YU Hong, ZHANG Zhonglei, et al. Digital and fine management practice of open-pit mining and stripping construction[J]. Gold Science and Technology, 2019, 27(4): 621-628.
[12] 陈建平,于萍萍,史蕊,等.区域隐伏矿体三维定量预测评价方法研究[J].地学前缘,2014,21(5):211-220. CHEN Jianping, YU Pingping, SHI Rui, et al. Research on three-dimensional quantitative prediction and evaluation methods of regional concealed ore bodies[J]. Earth Science Frontiers, 2014, 21(5): 211-220.
[13] 王功文,张寿庭,燕长海,等.基于地质与重磁数据集成的栾川钼多金属矿区三维地质建模[J].地球科学(中国地质大学学报),2011,36(2):360-366. WANG Gongwen, ZHANG Shouting, YAN Changhai, et al. 3D geological modeling based on geological and gravity-magnetic data integration in the Luanchuan molybdenum polymetallic deposit, China[J]. Earth Sciences-Journal of China university of geosciences, 2011, 36(2): 360-366.
[14] 王功文,张智强,李瑞喜,等.华北重点矿集区大数据三维/四维建模与深层次集成的资源预测评价[J].中国科学(地球科学),2021,51(9):1594-1610. WANG Gongwen, ZHANG Zhiqiang, LI Ruixi, et al. Resource prediction and assessment based on 3D/4D big data modeling and deep integration in key ore districts of North China[J]. Science China Earth Sciences, 64(9): 1590-1606.
[15] 程建远,刘文明,朱梦博,等.智能开采透明工作面地质模型梯级优化试验研究[J].煤炭科学技术,2020, 48(7):118-126. CHENG Jianyuan, LIU Wenming, ZHU Mengbo, et al. Experimental study on cascade optimization of geological models in intelligent mining transparency working face[J]. Coal Science and Technology, 2020, 48(7): 118-126.
[16] 毛明仓,张孝斌,张玉良.基于透明地质大数据智能精准开采技术研究[J].煤炭科学技术,2021,49(1):286-293. MAO Mingcang, ZHANG Xiaobin, ZHANG Yuliang Research on intelligent and precision mining technology based on transparent geological big data[J]. Coal Science and Technology, 2021, 49(1): 286-293.
[17] MENG Xianhai, LI Jigang, YANG Qin. 3D Structural geological modeling based on morphing field[C]// International on Information Engineering and Applications. IEA, 2012: 149-157. [18] 杨钦,刘瑞刚,孟宪海,等.二维复杂限定Delaunay三角化算法[J].计算机辅助设计与图形学学报,2007, 19(2):145-150. YANG Qin, LIU Ruigang, MENG Xianhai, et al. The algorithm of 2D complex conforming Delaunay triangulation[J]. Journal of computer-aided design & computer graphics, 2007, 19(2): 145-150.
[19] 杨钦,洪锦玲,张俊安,等.一种基于变形场的底面计算及图形生成方式:200510011336.9[P].2006-08-30. [20] 张俊安,刘瑞刚,杨钦,等.复杂地质结构的四维地质层面自动生成算法[J].北京航空航天大学学报,2007,33(9):1094-1098. ZHANG Junan, LIU Ruigang, YANG Qin, et al. Auto-construction algorithm of four-dimensional(4D) geological stratum on complex geological structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(9): 1094-1098.
[21] 李兆亮,潘懋,韩大匡,等.三维构造建模技术[J].地球科学,2016,41(12):2136-2146. LI Zhaoliang, PAN Mao, HAN Dakuang, et al. Three-dimensional structural modeling technique[J]. Earth Science, 2016, 41(12): 2136-2146.
[22] 李兆亮,潘懋,杨洋,等.三维复杂断层网建模方法及应用[J].北京大学学报(自然科学版),2015,51(1):79-85. LI Zhaoliang, PAN Mao, YANG Yang, et al. Research and application of the three-dimensional complex fault network modeling[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2015, 51(1): 79-85.
[23] 张慧,潘懋,曹凯,等.复杂断层网建模关键技术[J].科学工程与技术,2018,18(20):281-285. ZHANG Hui, PAN Mao, CAO Kai, et al. Key technology of complex fault net modeling[J]. Science Technology and Engineering, 2018, 18(20): 281-285.
-
期刊类型引用(23)
1. 邓娅,袁梅,陈国洪,吕晴. 不同酸化条件下无烟煤的化学结构变化研究. 煤矿安全. 2025(02): 9-15 . 本站查看
2. 徐遵玉. 工作面煤层瓦斯立体抽采时空效应分析. 能源与环保. 2024(02): 10-16 . 百度学术
3. 郭勇. 可控冲击波强化增透技术在林华煤矿高瓦斯低渗透煤层的应用. 内蒙古煤炭经济. 2024(10): 168-170 . 百度学术
4. 王浩,赵耀江,孙晓元. 液氮溶浸时间对原煤力学及破坏形式的影响. 煤矿安全. 2024(08): 25-30 . 本站查看
5. 吴建俊. 水力压裂增透在低透气性煤层瓦斯抽采中的应用. 煤. 2023(05): 103-105 . 百度学术
6. 刘佳佳,聂子硕,于宝种,杨迪. 超临界二氧化碳对煤体增透的作用机理及影响因素分析. 煤炭科学技术. 2023(02): 204-216 . 百度学术
7. 宋建民,邹永洺. 基于EGF增渗材料的煤层酸化增透技术研究. 煤矿安全. 2023(05): 161-168 . 本站查看
8. 许阳,李大勇. 液氮循环冻融对煤孔隙率及吸附瓦斯性能演化特征影响的试验研究. 矿业安全与环保. 2023(03): 42-47 . 百度学术
9. 徐德宇,马豪娟,崔洪庆,王天瑜,刘涛. 相变蓄热作用下煤体增透影响因素研究. 煤矿安全. 2023(07): 118-122 . 本站查看
10. 张书金,陈蒙磊,张锡兵,李国红,付金磊. 可控冲击波煤层增透技术应用研究. 煤炭技术. 2023(09): 129-133 . 百度学术
11. 林柏泉,张祥良. 低透难抽煤层等离子体致裂增透机制及研究进展. 中国矿业大学学报. 2023(06): 1041-1057 . 百度学术
12. 徐文俊. 高瓦斯低渗透性煤层增透技术研究. 矿业装备. 2023(12): 66-69 . 百度学术
13. 白亚军,董强. 不同角度穿层钻孔高压水力压裂影响范围研究. 能源技术与管理. 2022(01): 46-48+197 . 百度学术
14. 刘增亮,董强. 穿层钻孔水力压裂增透促抽瓦斯试验研究. 现代矿业. 2022(02): 104-107 . 百度学术
15. 张慧峰. 液态CO_2冻结时间对煤体孔隙结构的影响试验研究. 煤矿安全. 2022(05): 27-31 . 本站查看
16. 李成成. 水力割缝封孔提高瓦斯抽采浓度试验研究. 能源与环保. 2022(06): 285-289+295 . 百度学术
17. 赵伟,袁源,王凯,徐超,宋亚楠,冯忠凯,郭小芳,王柳懿. 深度对含瓦斯煤层水力压裂裂纹转向行为的影响数值模拟分析. 煤矿安全. 2022(10): 51-56 . 本站查看
18. 赵文革,陈跟马,唐洪,吴学明. 彬长矿区低渗透煤层水力割缝增透技术试验. 陕西煤炭. 2021(S1): 1-5+12 . 百度学术
19. 唐强. E0103工作面CO_2预裂技术数值模拟研究. 河南科技. 2021(11): 73-75 . 百度学术
20. 方文会,廖引. 高瓦斯矿井区域瓦斯分级治理方法及其在潞安矿区的应用研究. 能源与环保. 2021(09): 64-71 . 百度学术
21. 党军超. 新安煤矿穿层消突钻孔水力冲孔合理出煤量分析. 能源技术与管理. 2021(06): 40-41 . 百度学术
22. 冯仁俊. 煤层群分层水力压裂与多层综合压裂增透效果对比研究. 煤矿安全. 2021(12): 21-28 . 本站查看
23. 张春华,张子健,年军,焦登铭. 大直径双钻孔强化抽采瓦斯效应及效果分析. 煤田地质与勘探. 2021(06): 273-280 . 百度学术
其他类型引用(12)
计量
- 文章访问数: 28
- HTML全文浏览量: 1
- PDF下载量: 15
- 被引次数: 35