• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

液态CO2冻结时间对煤体孔隙结构的影响试验研究

张慧峰

张慧峰. 液态CO2冻结时间对煤体孔隙结构的影响试验研究[J]. 煤矿安全, 2022, 53(5): 27-31.
引用本文: 张慧峰. 液态CO2冻结时间对煤体孔隙结构的影响试验研究[J]. 煤矿安全, 2022, 53(5): 27-31.
ZHANG Huifeng. Experimental study on effect of freezing time of liquid CO2 on pore structure of coal[J]. Safety in Coal Mines, 2022, 53(5): 27-31.
Citation: ZHANG Huifeng. Experimental study on effect of freezing time of liquid CO2 on pore structure of coal[J]. Safety in Coal Mines, 2022, 53(5): 27-31.

液态CO2冻结时间对煤体孔隙结构的影响试验研究

Experimental study on effect of freezing time of liquid CO2 on pore structure of coal

  • 摘要: 为促进低透气性煤层瓦斯抽采,优化注液态CO2冻融致裂煤层增透促进瓦斯抽采技术,以常村煤矿为研究背景,利用核磁共振、超声波检测等手段,分析了不同液态CO2冻结时间下煤体孔隙结构的演化及损伤机理。研究结果表明:冻融50 min后煤样宏观裂隙变化逐渐明显;随着致裂时间的增加,煤体横波与纵波均逐渐降低,纵波和横波下降率范围分别为5.55%~34.33%、3.72%~17.44%;煤体中各尺寸孔隙逐渐发育,全孔T2谱面积增长率从28.67%升至61.49%,煤体孔隙连通性加强,有利于提高煤体的渗透性。
    Abstract: In order to promote gas drainage in low-permeability coal seams, implement the optimization of enhancing permeability and promoting gas drainage technology by liquid CO2 injection into freeze-thaw cracked coal seams, taking Changcun Coal Mine as the research background, using nuclear magnetic resonance, ultrasonic detection and other methods, the evolution of coal pore structure and damage mechanism under different freezing times of liquid CO2 are analyzed. The research results show that the macroscopic cracks of the coal sample gradually change significantly after freezing and thawing for 50 minutes. With the increase of the fracture time, the shear and longitudinal waves of the coal body gradually decrease, and the reduction rates of longitudinal and shear waves are in the range of 5.55% to 34.33% and 3.72% to 17.44% respectively; pores of various sizes in the coal body gradually develop, and the growth rate of full-pore T2 spectrum area increased from 28.67% to 61.49%, and the pore connectivity of the coal body was strengthened, which was conducive to improving the permeability of the coal body.
  • [1] 刘彦伟,张鑫淼,苗健.中高阶煤孔隙结构的演化规律研究[J].煤矿安全,2020,51(11):7-13.

    LIU Yanwei, ZHANG Xinmiao, MIAO Jian. Study on evolution of pore structure of medium and high rank coals[J]. Safety in Coal Mines, 2020, 51(11): 7-13.

    [2] 任明龙.冻结作用对原煤力学性能影响的试验研究[D].重庆:重庆大学,2018.
    [3] 董若蔚.基于液氮冻结的石门揭煤防突方法实验研究[D].北京:中国矿业大学(北京),2019.
    [4] 张晓刚,姜文忠,都锋.高瓦斯低透气性煤层增透技术发展现状及前景展望[J].煤矿安全,2021,52(2):169-176.

    ZHANG Xiaogang, JIANG Wenzhong, DU feng. Development status and prospect of permeability enhancement technology in high gas low permeability coal seam[J]. Safety in Coal Mines, 2021, 52(2): 169-176.

    [5] Gang BAI,Xueming LI,Xihua ZHOU,et al. Evaluation of lignite combustion characteristics and gas explosion risks under different air volumes[J]. Energy Sources, Part A: Recovery,Utilization,and Environmental Effects, 2020, 43(5):1-15.
    [6] Zifeng LI, Hongfang XU, Chaoyue ZHANG. Liquid nitrogen gasification fracturing technology for shale gas development[J]. Journal of Petroleum Science and Engineering, 2016, 138(2): 253-256.
    [7] 李和万,王来贵,张春会.冷加载循环作用下煤样强度特性研究[J].中国安全生产科学技术,2016,12(4):10-14.

    LI Hewan, WANG Laigui, ZHANG Chunhui, et al. Study on characteristic of coal sample strength under cyclic cold loading[J]. Journal of Safety Science and Technology, 2016, 12(4): 10-14.

    [8] Gang BAI, Xiaokun ZENG, Xueming LI, et al. Influence of Carbon Dioxide on the Adsorption of Methane by Coal Using Low-Field Nuclear Magnetic Resonance[J]. Energy & Fuels, 2020, 34(5): 6113-6123.
    [9] 任韶然,范志坤,张亮,等.液氮对煤岩的冷冲击作用机制及试验研究[J].岩石力学与工程学报,2013(S2):3790.

    REN Shaoran, FAN Zhikun, ZHANG Liang, et al. Mechanisms and experimental study of thermal-shock effect on coal-rock using liquid nitrogen[J]. Chinese Journal of Rock Mechanics and Engineering, 2013(S2): 3790.

    [10] XU Jizhao, ZHAI Cheng, LIU Shimin, et al. Pore variation of three different metamorphic coals by multiple freezing-thawing cycles of liquid CO2 injection for coalbed methane recovery[J]. Fuel, 2017, 208(11): 41-51.
    [11] 李杰林,刘汉文.冻融循环作用下砂岩孔隙体积变形模型的建立与分析[J].冰川冻土,2018,40(6):1173-1180.

    LI Jielin, LIU Hanwen. Establishment and analysis of the volumetric deformation model of sandstone pores under the effect of freezing-thawing cycles[J]. Journal of Glaciology and Geocryology, 2018, 40(6): 1173.

    [12] 李杰林,朱龙胤,周科平,等.冻融作用下砂岩孔隙结构损伤特征研究[J].岩土力学,2019,40(9):3524.

    LI Jielin, ZHU Longyin, ZHOU Keping, et al. Damage characteristics of sandstone pore structure under freeze-thaw cycles[J]. Rock and Soil Mechanics, 2019, 40(9): 3524.

    [13] 闫道成.不同含水率煤体液氮冻融损伤效应实验研究[D].北京:中国矿业大学(北京),2019.
    [14] 武世亮.冻融对煤体损伤及瓦斯放散影响实验研究[D].北京:中国矿业大学(北京),2017.
    [15] BAI Gang, JIANG Yanhang, LI Xueming, et al. Quantitative experimental investigation of CO2 enhancement of the desorption rate of adsorbed CH4 in coal[J]. Energy Reports, 2020, 6(12): 2336-2344.
    [16] Yidong CAI, Dameng LIU, Zhejun PAN, et al. Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China[J]. Fuel, 2013, 103(1): 258-268.
    [17] YanBin YAO, DaMeng LIU, YiDong CAI, et al. Advanced characterization of pores and fractures in coals by nuclear magnetic resonance and X-ray computed tomography[J]. Science China Earth Sciences, 2010, 53(6): 854-862.
计量
  • 文章访问数:  36
  • HTML全文浏览量:  0
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 发布日期:  2022-05-19

目录

    /

    返回文章
    返回