• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

煤系气联合开发甜层评价方法研究

杨宗楠, 孙长彦, 范毅刚, 许猛堂, 孙俊义, 余莉珠

杨宗楠, 孙长彦, 范毅刚, 许猛堂, 孙俊义, 余莉珠. 煤系气联合开发甜层评价方法研究[J]. 煤矿安全, 2023, 54(1): 62-69.
引用本文: 杨宗楠, 孙长彦, 范毅刚, 许猛堂, 孙俊义, 余莉珠. 煤系气联合开发甜层评价方法研究[J]. 煤矿安全, 2023, 54(1): 62-69.
YANG Zongnan, SUN Changyan, FAN Yigang, XU Mengtang, SUN Junyi, YU Lizhu. Study on sweet layers evaluation method for coal measures gas joint development[J]. Safety in Coal Mines, 2023, 54(1): 62-69.
Citation: YANG Zongnan, SUN Changyan, FAN Yigang, XU Mengtang, SUN Junyi, YU Lizhu. Study on sweet layers evaluation method for coal measures gas joint development[J]. Safety in Coal Mines, 2023, 54(1): 62-69.

煤系气联合开发甜层评价方法研究

Study on sweet layers evaluation method for coal measures gas joint development

  • 摘要: 选取影响煤系气开发的主要地质因素,采用多层次模糊数学法构建了煤系气开发甜层评价体系,其中各类储层的可改造性权重最高,资源丰度其次,可采性所占权重相对较低。在此基础上,对河南平顶山矿区HN-02井主采煤层所在下石盒子组和山西组地层进行甜层评价,优选出15个甜层,包含煤层7层、泥页岩甜层7层、致密岩甜层1层;各甜层中,二1煤、四2煤及其底板炭质泥岩具有良好的资源条件,四3煤顶板细砂岩与泥岩、四2煤底板薄煤层与炭质泥岩、下石盒子组底部泥岩具有较高的可改造性。煤系气开发阶段,优先对甜层进行射孔、压裂,有利于在有限的施工规模下提升井控范围内可采资源量、储层改造效果,进而促进煤系气高效产出。
    Abstract: This paper selects the main geological factors that affect the coal measure gas (CMG) development, and adopts a multi-level fuzzy mathematical method to construct a sweet layer evaluation system. Among the factors concerned, the reservoir reformability possesses the highest weight, followed by the resource abundance and the gas recoverability. On this basis, the lower Shihezi and Shanxi formations of a vertical well(HN-02) in Pingdingshan Mining Area is evaluated for selecting CMG development sweet layers. As a result, 15 sweet layers are selected, including 7 coal seams, 7 shale layers and 1 tight sandstone layer. Among these sweet layers, the 21 coal, the 42 coal and its floor carbonaceous mudstone have good resource conditions. The 43 coal roof fine sandstone and mudstone, the 42 coal floor thin coal seam and carbonaceous mudstone, as well as the bottom mudstone of the lower Shihezi Formation possess high reformability. During the CMG development stage, the sweet layers are suggested to be perforated and fractured preferentially, which would be conducive to improve the recoverable resources within the well control range and the reservoir stimulation effect under an limited fracturing scale, so as to promote the efficient production of coal measure gas.
  • [1] 秦勇,吴建光,申建,等.煤系气合采地质技术前缘性探索[J].煤炭学报,2018,43(6):1504-1516.

    QIN Yong, WU Jianguang, SHEN Jian, et al. Frontier research of geological technology for coal measure gas joint-mining[J]. Journal of China Coal Society, 2018, 43(6): 1504-1516.

    [2] 邹才能,杨智,黄士鹏,等.煤系天然气的资源类型、形成分布与发展前景[J].石油勘探与开发,2019,46(3):433-442.

    ZOU Caineng, YANG Zhi, HUANG Shipeng, et al. Resource types, formation, distribution and prospects of coal-measure gas[J]. Petroleum Exploration and Development, 2019, 46(3): 433-442.

    [3] 秦勇.中国煤系气共生成藏作用研究进展[J].天然气工业,2018,38(4):26-36.

    QIN Yong. Research progress of symbiotic accumulation of coal measure gas in China[J]. Natural Gas Industry, 2018, 38(4): 26-36.

    [4] 曹代勇,姚征,李靖.煤系非常规天然气评价研究现状与发展趋势[J].煤炭科学技术,2014,42(1):89-92.

    CAO Daiyong, YAO Zheng, LI Jing. Evaluation status and development trend of unconventional gas in coal measure[J]. Coal Science and Technology, 2014, 42(1): 89-92.

    [5] QIN Yong, MOORE Tim A, SHEN Jian, et al. Resources and geology of coalbed methane in China: a review[J]. International Geology Review, 2018, 60(5-6): 777-812.
    [6] 苏现波,马耕,宋金星,等.煤系气储层缝网改造技术及应用[M].北京:科学出版社,2017.
    [7] BI Caiqin, ZHANG Jiaqiang, SHAN Yansheng, et al. Geological characteristics and coexploration and coproduction methods of Upper Permian Longtan coal measure gas in Yangmeishu Syncline, Western Guizhou Province, China[J]. China Geology, 2020, 3(1): 38-51.
    [8] 姜杉钰,王峰.中国煤系天然气共探合采的战略选择与发展对策[J].天然气工业,2020,40(1):152-159.

    JIANG Shanyu, WANG Feng. Strategic choice and development countermeasures for the commingled exploration and exploitation of coal measure natural gas in China[J]. Natural Gas Industry, 2020, 40(1): 152-159.

    [9] 毕彩芹.煤系气-非常规天然气的“巨无霸”[N].中国矿业报,2019-07-30(3).
    [10] 廖东良.页岩气层“双甜点”评价方法及工程应用展望[J].石油钻探技术,2020,48(4):94-99.

    LIAO Dongliang. Evaluation methods and engineering application of the feasibility of “double sweet spots” in shale gas reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(4): 94-99.

    [11] 秦勇.煤系气聚集系统与开发地质研究战略思考[J].煤炭学报,2021,46(8):2387-2399.

    QIN Yong. Strategic thinking on research of coal measure gas accumulation system and development geology[J]. Journal of China Coal Society, 2021, 46(8): 2387-2399.

    [12] 毕彩芹,胡志方,汤达祯,等.煤系气研究进展与待解决的重要科学问题[J].中国地质,2021,48(2):402-423.

    BI Caiqin, HU Zhifang, TANG Dazhen, et al. Research progress of coal measure gas and some important scientific problems[J]. Geology in China, 2021, 48(2): 402-423.

    [13] 张小东,张硕,许亚坤,等.基于模糊数学的豫东煤系气资源勘探有利区预测[J].煤炭科学技术,2018,46(11):172-181.

    ZHANG Xiaodong, ZHANG Shuo, XU Yakun, et al. Favorable block prediction of coal measure gas resource exploration in Eastern Henan based on fuzzy mathematics[J]. Coal Science and Technology, 2018, 46(11): 172-181.

    [14] 杨兆彪,李洋阳,秦勇,等.煤层气多层合采开发单元划分及有利区评价[J].石油勘探与开发,2019,46(3):559-568.

    YANG Zhaobiao, LI Yangyang, QIN Yong, et al. Development unit division and favorable area evaluation for joint mining coalbed methane[J]. Petroleum Exploration and Development, 2019, 46(3): 559-568.

    [15] 孙斌,琚宜文,卢双舫,等.鄂尔多斯盆地东缘临兴区块煤系“三气”合采储层可改造性评价因素分析及其应用[J].地球科学前沿,2020,10(2):85-99.

    SUN Bin, JU Yiwen, LU Shuangfang, et al. Reconstruction evaluation method and application of coal measure three gases co-mining reservoirs in Linxing Block, East Ordos Basin[J]. Advances in Geosciences, 2020, 10(2): 85-99.

    [16] SHAO Longyi, HOU Haihai, TANG Yue, et al. Selection of strategic replacement areas for CBM exploration and development in China[J]. Natural Gas Industry B, 2015, 2(2-3):211-221.
    [17] CHONG K K, GRIESER W V, JARIPATKE O A, et al. A Completions Roadmap to Shale-Play Development: A Review of Successful Approaches toward Shale-Play Stimulation in the Last Two Decades[C]//SPE 2010 Canadian Unconventional Resources and International Petroleum Conference. United States: Society of Petroleum Engineers, 2010: 1-27.
    [18] 傅雪海,张苗,张庆辉,等.山西省域石炭二叠纪煤系泥页岩气储层评价指标体系[J].煤炭学报,2018,43(6):1654-1660.

    FU Xuehai, ZHANG Miao, ZHANG Qinghui, et al. Evaluation index system for the Permo-Carboniferous mud shale reservoirs of coal measures in Shanxi Province[J]. Journal of China Coal Society, 2018, 43(6): 1654-1660.

    [19] 朱超.临兴地区煤系气开发地质单元[D].徐州:中国矿业大学,2019.
    [20] 刘强.“煤系三气”共采选区评价体系研究[D].阜新:辽宁工程技术大学,2016.
    [21] 蒲一帆,汤达祯,陶树,等.新疆阜康地区多煤层组合条件下开发层段评价优选[J].煤炭学报,2021,46(7):2321-2330.

    PU Yifan, TANG Dazhen, TAO Shu, et al. Evaluation and optimization of development intervals under conditions of multiple coal seam combinations in Fukang area[J]. Journal of China Coal Society, 2021, 46(7): 2321-2330.

    [22] 杨兆彪,秦勇,张争光,等.基于聚类分析的多煤层煤层气产层组合选择[J].煤炭学报,2018,43(6):1641-1646.

    YANG Zhaobiao, QIN Yong, ZHANG Zhengguang, et al. Production layer combination selection for coalbed methane development in multi-coal seams based on cluster analysis[J]. Journal of China Coal Society, 2018, 43(6): 1641-1646.

    [23] 黄华州,桑树勋,苗耀,等.煤层气井合层排采控制方法[J].煤炭学报,2014,39(S2):422-431.

    HUANG Huazhou, SANG Shuxun, MIAO Yao, et al. Drainage control of single vertical well with multi-hydraulic fracturing layers for coalbed methane development[J]. Journal of China Coal Society, 2014, 39(S2): 422-431.

    [24] 秦勇,吴建光,张争光,等.基于排采初期生产特征的煤层气合采地质条件分析[J].煤炭学报,2020,45(1):241-257.

    QIN Yong, WU Jianguang, ZHANG Zhengguang, et al. Analysis of geological conditions for coalbed methane co-production based on production characteristics in early stage of drainage[J]. Journal of China Coal Society, 2020, 45(1): 241-257.

  • 期刊类型引用(12)

    1. 陆睿,尹尚先,王玉国,孟浩鹏,王旭. 基于GMS的深部煤层开采工作面涌水量预测. 煤矿安全. 2025(01): 164-170 . 本站查看
    2. 陈永青,李俊,桂和荣. 煤层底板地面定向顺层孔区域超前治理及断层煤柱合理留设. 煤. 2025(03): 50-54 . 百度学术
    3. 张立川,许光泉,陈洪年,孙洪乐,杨传伟,齐静,秦志强. 济宁煤田鹿洼煤矿上组煤层水文地质特征分析. 能源与环保. 2024(01): 127-134 . 百度学术
    4. 王路法,孟华,刘昆鹏. 煤矿矿井水害隐蔽致灾因素识别与危险性分析. 煤炭技术. 2024(07): 179-182 . 百度学术
    5. 何海龙,王鹏胜,薛陆,张龙,梁金宝. 地下水运移对露天矿山边坡的影响探析与渗流减缓措施研究. 甘肃科学学报. 2024(03): 90-99 . 百度学术
    6. 谢彪,朱登奎,李柏辰,雷倩茹,郁静静,胡嘉奇,张兴华. 基于动态D-K算法的矿井突水应急疏散最优路径研究. 煤矿安全. 2024(06): 192-199 . 本站查看
    7. 王旭,尹尚先,曹敏,夏向学,刘德旺,张金福,吴传实,李启兴,王浩瑞,陆睿. 基于FHH分形理论的隆德煤矿砂岩微观孔隙研究. 煤矿安全. 2024(10): 179-189 . 本站查看
    8. 王甜甜,方刚,张溪彧,王淑璇. 基于水化学和氢氧同位素特征的敏东一矿水源定性定量研究. 煤矿安全. 2024(10): 190-197 . 本站查看
    9. 董海潮,金鑫. 定向长钻孔疏放老空水技术研究. 中国煤炭地质. 2024(12): 23-27 . 百度学术
    10. 任邓君,蔺成森,霍超,马家辉,许南南. 高家堡煤矿洛河组含水层水文地质特征及水害防治. 陕西煤炭. 2023(06): 119-124+135 . 百度学术
    11. 孙文洁,李文杰,宁殿艳,任凌枫. 我国煤矿水害事故现状、预测及防治建议. 煤田地质与勘探. 2023(12): 185-194 . 百度学术
    12. 彭清源. 贵州瑞丰煤矿开采充水因素分析及涌水量预测. 煤炭与化工. 2023(12): 42-46 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  26
  • HTML全文浏览量:  0
  • PDF下载量:  19
  • 被引次数: 15
出版历程
  • 发布日期:  2023-01-19

目录

    /

    返回文章
    返回