Research on optimal emergency evacuation path for mine water inrush based on dynamic D-K algorithm
-
摘要:
矿井水害发生后,选择恰当的应急疏散路径,对于降低矿井人员伤亡和事故等级至关重要。传统的Dijkstra算法不能有效应用于矿井突水的动态环境,只能静态规划出单一的最优逃生路径。为此,提出了1种基于时间当量长度的最优路径分析方法。该方法实现了对传统的Dijkstra算法的动态优化,优化后求解的最优路径随时间、水位高度进行动态变化,并将动态Dijkstra算法与K则最优路径算法相结合,实现对多条最优逃生路径的动态规划。应用表明:优化后的动态D-K算法能够有效适用矿井水害随机性、动态性、复杂性的特点,为受灾人员选择应急逃生路径提供重要的决策支撑。
-
关键词:
- 矿井突水 /
- 应急疏散 /
- 最优路径 /
- Dijkstra算法 /
- 动态选择
Abstract:After the occurrence of mine water inrush, choosing the appropriate emergency evacuation path is very important to reduce the casualty and the mine accident level. The traditional Dijkstra algorithm can not be effectively applied to the dynamic environment of mine water inrush. It can only statically plan a single optimal escape path. In view of the limitations of this algorithm, the time equivalent length is introduced to optimize the traditional Dijkstra algorithm to realize the dynamic change of the optimal escape path with time and water level height. Moreover, the optimized Dijkstra algorithm is combined with the K optimal path algorithm to realize the dynamic planning of multiple optimal escape paths. Field application shows that the optimized dynamic D-K algorithm can be effectively applied to mine water inrush with characteristics of randomness, dynamics and complex, which can provide important decision support for affected personnel to choose emergency escape path.
-
Keywords:
- mine water inrush /
- emergency evacuation /
- optimal path /
- Dijkstra algorithm /
- dynamic selection
-
-
表 1 相关巷道水位上升情况
Table 1 Water level rise in relevant roadway
巷道段 巷道当量长度/
m巷端两端高度差/
m水位上升速率/
(cm·min−1)节点7→节点1 584 5.31 2.93 节点7→节点2 287 1.52 1.71 节点7→节点11 145 0.79 1.75 节点2→节点17 423 2.16 1.64 节点1→节点9 608 5.80 3.07 节点17→节点9 568 5.10 2.89 节点9→节点3 434 3.50 2.60 节点2→节点5 697 2.83 1.31 节点5→节点13 514 3.67 2.30 节点13→节点10 497 3.24 2.10 节点9→节点13 615 3.10 1.62 节点2→节点12 678 2.33 1.11 节点12→节点6 519 3.52 2.18 节点12→节点8 760 3.78 1.60 节点8→节点6 437 4.96 3.66 节点11→节点15 591 1.35 0.74 节点15→节点6 638 2.45 1.24 节点6→节点14 396 1.13 0.92 表 2 巷道不同水位下矿工的安全通行系数
Table 2 Safe passage coefficient of miners under different water levels of roadway
水位高度/
m巷道安全
通行系数通行状态 危险程度 0.175 0.9/0.902 8 绿色/绿色 自由通过/自由通过 0.350 0.8/0.805 6 蓝色/绿色 可通过/自由通过 0.525 0.7/0.708 3 黄色/蓝色 需要考虑通过/可通过 0.875 0.5/0.513 9 橙色/黄色 不建议通过/需要考虑通过 1.225 0.3/0.319 4 红色/橙色 不可通过/不建议通过 1.575 0.1/0.125 0 深红色/红色 禁止通过/不可通过 表 3 相关巷道在t=1/t=15 min时的时间当量长度
Table 3 Time equivalent length of the relevant roadway at t=1/t=15 min
巷道 速度/(m·s−1) 时间当量长度/s t=1 min t=15 min t=1 min t=15 min 节点7→节点1 2 1.68 292.0 347.62 节点7→节点2 2 1.89 143.5 151.85 节点7→节点11 2 1.89 72.5 76.72 节点2→节点17 2 1.88 211.5 225.00 节点1→节点9 2 1.65 304.0 368.48 节点17→节点9 2 1.69 254.0 300.59 节点9→节点3 2 1.74 217.0 249.43 节点2→节点5 2 1.95 348.5 357.44 节点5→节点13 2 1.76 257.0 292.05 节点13→节点10 2 1.82 248.5 273.08 节点9→节点13 2 1.91 307.5 321.99 节点2→节点12 2 2.00 339.0 339.00 节点12→节点6 2 1.80 259.5 288.33 节点12→节点8 2 1.91 380.0 397.91 节点8→节点6 2 1.56 218.5 280.13 节点11→节点15 2 2.00 295.5 295.50 节点15→节点6 2 1.97 319.0 323.86 节点6→节点14 2 2.00 198.0 198.00 表 4 动态D-K算法在不同时间的最优路径比较
Table 4 Comparison of optimal path search by dynamic D-K algorithm at different times
时间 序号 逃生路线 路径长度/m 通过时间/s t=1 min 1 节点7→节点1→节点9→节点3 1 626 809.00 2 节点7→节点2→节点17→节点9→节点3 1 712 826.00 3 节点7→节点11→节点15→节点6→节点14 1 770 885.00 t=15 min 1 节点7→节点11→节点15→节点6→节点14 1 770 894.08 2 节点7→节点2→节点17→节点9→节点3 1 712 926.87 3 节点7→节点1→节点9→节点3 1 626 965.53 表 5 传统D-K算法在不同时间的最优路径比较
Table 5 Comparison of optimal path search by traditional D-K algorithm at different times
时间 序号 逃生路径 路径长度 /m 通过时间 /s t=1 min
t=15 min1 节点7→节点1→节点9→节点3 1 626 809.0 2 节点7→节点2→节点5→节点13→节点10 1 995 997.5 3 节点7→节点11→节点15→节点6→节点14 1 770 885.0 -
[1] 叶力进,许进鹏,刘统学,等. 煤矿水害基本类型与动态演化类型划分[J]. 煤矿安全,2022,53(11):207−211. YE Lijin, XU Jinpeng, LIU Tongxue, et al. Basic types of mine water disasters and classification of dynamic evolution types[J]. Safety in Coal Mines, 2022, 53(11): 207−211.
[2] 徐斌,祁荣荣,尹尚先,等. 我国煤矿水害重特大事故相关因素特征分析及防治对策[J]. 煤矿安全,2023,54(5):13−19. XU Bin, QI Rongrong, YIN Shangxian, et al. Characteristics analysis of correlation factors of coal mine water hazard accidents and prevention and control measures[J]. Safety in Coal Mines, 2023, 54(5): 13−19.
[3] 孙文洁,李文杰,杨文凯,等. 煤炭矿山水环境问题类型划分及治理模式[J]. 煤矿安全,2023,54(5):35−41. SUN Wenjie, LI Wenjie, YANG Wenkai, et al. Classification of water environment problems in coal mine and treatment mode[J]. Safety in Coal Mines, 2023, 54(5): 35−41.
[4] 孙殿阁,蒋仲安. 改进的Dijkstra算法在矿井应急救援最优避灾路线求取中的应用[J]. 矿业安全与环保,2005,32(5):38−40. SUN Diange, JIANG Zhongan. Application of improved Dijkstra algorithm in choice of best escaping route in mine emergency response[J]. Mining Safety & Environmental Protectio, 2005, 32(5): 38−40.
[5] 成韶辉,张雪英,李凤莲,等. K则最优路径在矿井水害避灾中的应用研究[J]. 金属矿山,2014(1):137−140. CHENG Shaohui, ZHANG Xueying, LI Fenglian, et al. Application of K shortest path algorithm in avoiding from mine water disaster[J]. Metal Mine, 2014(1): 137−140.
[6] 赵作鹏,宋国娟,宗元元,等. 基于D-K算法的煤矿水灾多最佳路径研究[J]. 煤炭学报,2015,40(2):397−402. ZHAO Zuopeng, SONG Guojuan, ZONG Yuanyuan, et al. Research on the multi-optimal paths of coal mine floods based on the D-K algorithm[J]. Journal of China Coal Society, 2015, 40(2): 397−402.
[7] 卢国菊,高彩军. 矿井灾变时期最优避灾路径研究[J]. 矿业安全与环保,2017,44(2):70−73. LU Guoju, GAO Caijun. Research on optimal route for escaping disaster during period of mine disaster[J]. Mining Safety & Environmental Protection, 2017, 44(2): 70−73.
[8] 杜沅泽. 矿井水害应急疏散优化方法及系统研究[D]. 北京:中国矿业大学(北京),2023. [9] 丁莹莹,卜昌森,连会青,等. 基于仿真平台的矿井突水淹没路径和逃生路径规划[J]. 煤矿安全,2023,54(5):20−26. DING Yingying, BU Changsen, LIAN Huiqing, et al. Mine water inrush path and escape path planning based on simulation platform[J]. Safety in Coal Mines, 2023, 54(5): 20−26.
[10] 于丹,颜伟,李劭昱. 基于权值时变模型的矿井突水最优逃生路径的动态选择[J]. 科学技术与工程,2022,22(12):4762−4771. YU Dan, YAN Wei, LI Shaoyu. Dynamic selection of optimal escape path of mine water inrush based on weight time-varying model[J]. Science Technology and Engineering, 2022, 22(12): 4762−4771.
[11] 卢国菊,王飞. 矿井火灾时期K则最优避灾路径研究[J]. 煤矿安全,2013,44(4):35−37. LU Guoju, WANG Fei. Research on K shortest avoid disaster path during mine fire period[J]. Metal Mine, 2013, 44(4): 35−37.
[12] 王德明,王省身,崔岗. 矿井火灾时期井巷可通行性及选择最佳救灾与避灾路线的研究[J]. 煤炭学报,,1994(1):58−61. WANG Deming, WANG Shengshen, CUI Gang. Travel ability of shaft and roadway in a mine fire hazard and selection of optimal rescue and escape routes[J]. Journal of China Coal Society, 1994(1): 58−61.
[13] 倪燕. 金属矿山井下灾害人员逃生最优路径研究[D]. 长沙:中南大学,2013. [14] 冯子阳. 矿井突水模拟及逃生路径分析系统研究与应用[D]. 北京:中国矿业大学(北京),2022. [15] 康宁. 基于改进Dijkstra算法的煤矿井下应急路径规划研究[D]. 西安:西安科技大学,2020. [16] Sedeño-noda A, Colebrook M. A biobjective Dijkstra algorithm[J]. European Journal of Operational Rese-arch, 2019, 276(1): 106−118.
[17] 高松,陆锋. K则最短路径算法效率与精度评估[J]. 中国图象图形学报,2009,14(8):1677−1683. GAO Song, LU Feng. The Kth shortest path algorithms: accuracy and efficiency eval-uation[J]. Journal of Image and Graphics, 2009, 14(8): 1677−1683.
[18] 周越,朱希安,王占刚. 矿井水灾逃生路径建模及路径规划研究[J]. 煤矿安全,2018,49(11):199−203. ZHOUYue, ZHU Xi’an, WANG Zhangang. Research on escape path modeling and planning for mine flood[J]. Safety in Coal Mines, 2018, 49(11): 199−203.
[19] 周越,朱希安,王占刚. Dijkstra算法在矿井水灾动态避灾路径中的改进与应用[J]. 煤炭工程,2019,51(3):18−22. ZHOU Yue, ZHU Xi’an, WANG Zhangang. Improvement and application in Dijkstra algorithm in dynamic route selection of mine flood[J]. Coal Engineering, 2019, 51(3): 18−22.
-
期刊类型引用(1)
1. 孔令帅,栗继祖. 安全基地型领导对新生代矿工安全参与行为的影响研究. 煤炭经济研究. 2025(02): 170-176 . 百度学术
其他类型引用(0)