高瓦斯碎软煤层“钻-护-测”一体化新技术
New integrated technology of “drilling-protecting-measuring” borehole in soft-fragmentized coal seam with high gas
-
摘要: 碎软煤层普遍存在构造应力复杂、瓦斯压力高、渗透率低、煤体易破碎等特点,在瓦斯抽采钻孔施工时易发生塌孔、喷孔及孔壁失稳等,导致钻进困难、孔内事故频发、成孔深度浅及钻孔堵塞等问题。高瓦斯碎软煤层的安全、高效、精准钻进、护孔及测孔技术一直是碎软煤层瓦斯治理的重大需求和研究热点。针对碎软煤层瓦斯抽采钻孔施工技术面临的问题,提出了“钻-护-测”一体化施工新技术。“钻-护-测”一体化施工新技术将钻孔、护孔、测孔3个独立的施工步骤通过技术改进转变为在钻孔施工过程中一并完成放置筛管的护孔作业及测量钻孔轨迹的测孔作业;相比传统钻孔施工方法,采用该施工新技术提高了碎软煤层钻进施工的安全及效率,有效避免了由于塌孔问题导致无法进行护孔、测孔作业的问题。该施工新技术在淮北矿业所属矿区推广应用实践表明:“钻-护-测”一体化的施工新技术极大地提升了高瓦斯碎软煤层钻进施工的完孔率,极大地降低了孔内事故的发生,为高瓦斯碎软煤层瓦斯抽采钻孔施工提供了新的施工技术及方法。Abstract: Soft-fragmentized coal seam is generally characterized by complex tectonic stress, high gas pressure, poor permeability, and easy crushing of coal body. In the construction of gas extraction borehole, borehole is easy to collapse, outburst and cause unstability of the hole wall, which will cause many problems such as drilling difficults, frequent accidents in the borehole, inadequate hole depth and borehole blockage. The technology of safe, efficient and precise borehole construction, borehole protection and borehole measurement in soft-fragmentized coal seam with high gas has always been the major requirements and research hotspot for gas control in soft-fragmentized coal seam. Aiming at the problems faced by borehole construction technology of gas drainage in soft-fragmentized coal seam, a new integrated borehole construction technology of “borehole construction, borehole protection and borehole measurement” is proposed. Through technical improvement, the three separate construction steps of “borehole construction, borehole protection and borehole measurement” are transformed into both borehole protection of placing screen pipe and borehole measurement of measuring borehole trajectory are achieved in the drilling construction process. Compared with the conventional borehole construction method, the new construction technology can improve the safety and efficiency of soft-fragmentized coal seam borehole construction, and effectively avoid the problem that borehole protection operation and borehole measurement operation cannot be carried out due to borehole collapse problem. The new construction technology is applied in the mining area belongs to Huaibei Mining Area, the practice shows that the new integrated borehole construction technology greatly improve completion borehole rate of drilling construction in soft-fragmentized coal seam with high gas, greatly reduces the occurrence of accidents in borehole. It provides a new construction technique and method for the drilling of gas drainage in soft-fragmentized coal seam with high gas.
-
-
[1] 袁亮.我国煤矿安全发展战略研究[J].中国煤炭,2021,47(6):1-6. YUAN Liang. Study on the development strategy of coal mine safe in China[J]. China Coal, 2021, 47(6): 1-6.
[2] 何学秋,王安虎,窦林名,等.突出危险煤层微震区域动态监测技术[J].煤炭学报,2018,43(11):3122. HE Xueqiu, WANG Anhu, DOU Linming, et al. Technology of microseismic dynamic monitoring on coal and gas outburst-prone zone[J]. Journal of China Coal Society, 2018, 43(11): 3122.
[3] 雷晓荣,程建远,陈龙,等.螺旋钻进随钻轨迹测量技术与装备研究[J].煤炭科学技术,2016,44(9):140. LEI Xiaorong, CHENG Jianyuan, CHEN Long, et al. Study on measuring technology with drilling track and equipment of spiral drilling[J]. Coal Science and Technology, 2016, 44(9): 140.
[4] 赵玮烨.新型矿用普通回转钻机无线钻孔轨迹测量系统的研发[J].能源与环保,2017,39(12):172-175. ZHAO Weiye. Development of wireless drilling hole measuring system for new mine common rotary drilling machine[J]. China Energy and Environmental Protection, 2017, 39(12): 172-175.
[5] 王力,姚宁平,姚亚峰,等.煤矿井下碎软煤层顺层钻完孔技术研究进展[J].煤田地质与勘探,2021,49(1):285. WANG Li, YAO Ningping, YAO Yafeng, et al. Research progress of drilling and borehole completion technologies in broken soft coal seam in underground coal mine[J]. Coal Geology & Exploration, 2021, 49(1): 285.
[6] 李泉新.碎软煤层复合定向钻进技术研究与应用[J].煤炭科学技术,2018,46(11):101-106. LI Quanxin. Research and application of drilling technology combined rotary with direction in soft-fragmentized coal seam[J]. Coal Science and Technology, 2018, 46(11): 101-106.
[7] 李胜,罗明坤,周利峰,等.高瓦斯综采工作面瓦斯立体抽采技术与应用[J].辽宁工程技术大学学报(自然科学版),2018,37(2):244-250. LI Sheng, LUO Mingkun, ZHOU Lifeng, et al. Technology and application of gas stereo drainage in high gas fully mechanized working face[J]. Journal of Liaoning Technical University(Natural Science), 2018, 37(2): 244-250.
[8] 李胜,毕慧杰,范超军,等.基于流固耦合模型的穿层钻孔瓦斯抽采模拟研究[J].煤炭科学技术,2017,45(5):121-127. LI Sheng, BI Huijie, FAN Chaojun, et al. Simulation study of gas drainage with borehole passed through strata based on fluid-solid coupling[J]. Coal Science and Technology, 2017, 45(5): 121-127.
[9] 周建成,陈鱼,王定琪.煤矿用新型三棱螺旋钻杆研制及应用[J].煤矿机械,2020,41(11):135-137. ZHOU Jiancheng, CHEN Yu, WANG Dingqi. Development and application of new type triangular spiral drill pipe for coal mine[J]. Coal Mine Machinery, 2020, 41(11): 135-137.
[10] 肖丽辉,王义红,李彦明.整体式三棱螺旋钻杆的研制及其应用[J].煤矿机械,2013,34(12):126-128. XIAO Lihui, WANG Yihong, LI Yanming. Development and application of integral triangular helix drilling rod[J]. Coal Mine Machinery, 2013, 34(12): 126-128.
[11] 李坤,凌标灿.钻护一体化技术在芦岭矿应用研究[J].煤炭技术,2016,35(5):82-83. LI Kun, LING Biaocan. Research on drilling and protection integration technology based on hole wall protection system of Luling coal mine[J]. Coal Technology, 2016, 35(5): 82-83.
[12] 张群,葛春贵,李伟,等.碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J].煤炭学报,2018,43(1):150-159. ZHAN Qun, GE Chungui, LI Wei, et al. A new model and application of coalbed methane high efficiency production from broken soft and low permeable coal seam by roof strata-in horizontal well and staged hydraulic fracture[J]. Journal of China Coal Society, 2018, 43(1): 150-159.
[13] 孙四清,张群,闫志铭,等.碎软低渗高突煤层井下长钻孔整体水力压裂增透工程实践[J].煤炭学报,2017,42(9):2337-2344. SUN Siqing, ZHANG Qun, YAN Zhiming, et al. Practice of permeability enhancement through overall hydraulic fracturing of long hole in outburst-prone soft crushed coal seam with low permeability[J]. Journal of China Coal Society, 2017, 42(9): 2337-2344.
-
期刊类型引用(12)
1. 陆睿,尹尚先,王玉国,孟浩鹏,王旭. 基于GMS的深部煤层开采工作面涌水量预测. 煤矿安全. 2025(01): 164-170 . 本站查看
2. 陈永青,李俊,桂和荣. 煤层底板地面定向顺层孔区域超前治理及断层煤柱合理留设. 煤. 2025(03): 50-54 . 百度学术
3. 张立川,许光泉,陈洪年,孙洪乐,杨传伟,齐静,秦志强. 济宁煤田鹿洼煤矿上组煤层水文地质特征分析. 能源与环保. 2024(01): 127-134 . 百度学术
4. 王路法,孟华,刘昆鹏. 煤矿矿井水害隐蔽致灾因素识别与危险性分析. 煤炭技术. 2024(07): 179-182 . 百度学术
5. 何海龙,王鹏胜,薛陆,张龙,梁金宝. 地下水运移对露天矿山边坡的影响探析与渗流减缓措施研究. 甘肃科学学报. 2024(03): 90-99 . 百度学术
6. 谢彪,朱登奎,李柏辰,雷倩茹,郁静静,胡嘉奇,张兴华. 基于动态D-K算法的矿井突水应急疏散最优路径研究. 煤矿安全. 2024(06): 192-199 . 本站查看
7. 王旭,尹尚先,曹敏,夏向学,刘德旺,张金福,吴传实,李启兴,王浩瑞,陆睿. 基于FHH分形理论的隆德煤矿砂岩微观孔隙研究. 煤矿安全. 2024(10): 179-189 . 本站查看
8. 王甜甜,方刚,张溪彧,王淑璇. 基于水化学和氢氧同位素特征的敏东一矿水源定性定量研究. 煤矿安全. 2024(10): 190-197 . 本站查看
9. 董海潮,金鑫. 定向长钻孔疏放老空水技术研究. 中国煤炭地质. 2024(12): 23-27 . 百度学术
10. 任邓君,蔺成森,霍超,马家辉,许南南. 高家堡煤矿洛河组含水层水文地质特征及水害防治. 陕西煤炭. 2023(06): 119-124+135 . 百度学术
11. 孙文洁,李文杰,宁殿艳,任凌枫. 我国煤矿水害事故现状、预测及防治建议. 煤田地质与勘探. 2023(12): 185-194 . 百度学术
12. 彭清源. 贵州瑞丰煤矿开采充水因素分析及涌水量预测. 煤炭与化工. 2023(12): 42-46 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 38
- HTML全文浏览量: 0
- PDF下载量: 20
- 被引次数: 15