• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

基于改进JHA-FRAM的掘进过程作业风险定量评价

吴兵, 金莎, 赵晨光, 崔心源

吴兵, 金莎, 赵晨光, 崔心源. 基于改进JHA-FRAM的掘进过程作业风险定量评价[J]. 煤矿安全, 2022, 53(6): 242-246,251.
引用本文: 吴兵, 金莎, 赵晨光, 崔心源. 基于改进JHA-FRAM的掘进过程作业风险定量评价[J]. 煤矿安全, 2022, 53(6): 242-246,251.
WU Bing, JIN Sha, ZHAO Chenguang, CUI Xinyuan. Quantitative evaluation of operation risk in tunneling process based on improved JHA-FRAM[J]. Safety in Coal Mines, 2022, 53(6): 242-246,251.
Citation: WU Bing, JIN Sha, ZHAO Chenguang, CUI Xinyuan. Quantitative evaluation of operation risk in tunneling process based on improved JHA-FRAM[J]. Safety in Coal Mines, 2022, 53(6): 242-246,251.

基于改进JHA-FRAM的掘进过程作业风险定量评价

Quantitative evaluation of operation risk in tunneling process based on improved JHA-FRAM

  • 摘要: 为进一步探索掘进过程中作业风险的耦合机理,准确高效评价作业风险等级,采用拟合优化后的JHA-FRMA方法从作业节点自身功能、上下游变化、并行作业影响3个方面进行风险识别;然后运用层次分析法(AHP)量化风险及作业节点重要度,结合集对分析(SPA)联系度的趋同程度对作业风险作出评价,并应用到山西某煤矿的掘进过程中。结果表明:在掘进过程中,“截割”作业风险等级最高,整个过程共有3个巨大风险点、5个重大风险点、12条高风险路径;该方法实现了作业过程的静态风险因素和动态风险态势的综合评价,所得结果不仅为有效落实煤矿企业作业分级管控机制提供了依据,还可以为作业过程中的工人和监督员提供有效的指导。
    Abstract: In order to further explore the coupling mechanism of operation risk in the tunneling process, and accurately and efficiently evaluate the operation risk level, the JHA-FRMA method after fitting optimization is used to identify risks from the three aspects of the operation node’s own function, upstream and downstream changes, and the impact of parallel operations. Analytical hierarchy process(AHP) and set pair analysis(SPA) are used to quantify the risk and the importance of operation nodes, and the operation risk is evaluated based on the degree of convergence of the connection degree, and applied to the tunneling process of a coal mine in Shanxi. The results show that the “cutting” operation has the highest risk level during the tunneling process. There are 3 huge risk points, 5 major risk points, and 12 high-risk paths in the whole process. This method realizes the comprehensive evaluation of static risk factors and dynamic risk situation in the operation process. The results obtained not only provide a basis for the effective implementation of the management and control mechanism of coal mine enterprises, but also provide effective guidance for workers and supervisors in the operation process.
  • [1] J Zhang, Xu K, Reniers G, et al. Statistical analysis the characteristics of extraordinarily severe coal mine accidents (ESCMAs) in China from 1950 to 2018[J]. Process Safety and Environmental Protection, 2019, 133(C): 1-9.
    [2] Rosa L V, Haddad A N, Carvalho P D. Assessing risk in sustainable construction using the Functional Resonance Analysis Method (FRAM)[J]. Cognition Technology & Work, 2015, 17(4): 1-15.
    [3] Simon Albery, David Borys, Susanne Tepe. Advantages for risk assessment: Evaluating learnings from question sets inspired by the FRAM and the risk matrix in a manufacturing environment[J]. Safety Science, 2016, 89: 180-189.
    [4] Pickup L, Atkinson S, Hollnagel E, et al. Blood sampling-Two sides to the story[J]. Applied ergonomics, 2017, 59: 234-242.
    [5] Fabien Belmonte, Walter Schon, Laurent Heurley. Interdisciplinary safety analysis of complex socio-technological systems based on the functional resonance accident model: An application to railway traffic supervision[J]. Reliability Engineering and System Safety, 2010, 96(2): 237-249.
    [6] Paulo Victor Rodrigues de Carvalho. The use of Functional Resonance Analysis Method (FRAM) in a mid-air collision to understand some characteristics of the air traffic management system resilience[J]. Reliability Engineering and System Safety, 2011, 96(11): 1482.
    [7] Patriarca Riccardo, Del Pinto Gianluca, Di Gravio Giulio. FRAM for Systemic Accident Analysis: A Matrix Representation of Functional Resonance[J]. International Journal of Reliability, Quality and Safety Engineering, 2018, 25(1): 1-29.
    [8] Frana, Josué E. M, Hollnagel E et al. FRAM AHP approach to analyse offshore oil well drilling and construction focused on human factors[J]. Cognition, Technology & Work, 2020, 22(3): 653-665.
    [9] 胡霞,钟文杰,程静静.基于AHP和熵权法的煤矿安全态势评价模型[J].煤矿安全,2021,52(2):248.

    HU Xia, ZHONG Wenjie, CHENG Jingjing. Situational evaluation model of coal mine safety based on AHP and entropy weight method[J]. Safety in Coal Mines, 2021, 52(2): 248.

    [10] 赵克勤.集对分析及其初步应用[M].杭州:浙江科学技术出版社,2000.
  • 期刊类型引用(12)

    1. 陆睿,尹尚先,王玉国,孟浩鹏,王旭. 基于GMS的深部煤层开采工作面涌水量预测. 煤矿安全. 2025(01): 164-170 . 本站查看
    2. 陈永青,李俊,桂和荣. 煤层底板地面定向顺层孔区域超前治理及断层煤柱合理留设. 煤. 2025(03): 50-54 . 百度学术
    3. 张立川,许光泉,陈洪年,孙洪乐,杨传伟,齐静,秦志强. 济宁煤田鹿洼煤矿上组煤层水文地质特征分析. 能源与环保. 2024(01): 127-134 . 百度学术
    4. 王路法,孟华,刘昆鹏. 煤矿矿井水害隐蔽致灾因素识别与危险性分析. 煤炭技术. 2024(07): 179-182 . 百度学术
    5. 何海龙,王鹏胜,薛陆,张龙,梁金宝. 地下水运移对露天矿山边坡的影响探析与渗流减缓措施研究. 甘肃科学学报. 2024(03): 90-99 . 百度学术
    6. 谢彪,朱登奎,李柏辰,雷倩茹,郁静静,胡嘉奇,张兴华. 基于动态D-K算法的矿井突水应急疏散最优路径研究. 煤矿安全. 2024(06): 192-199 . 本站查看
    7. 王旭,尹尚先,曹敏,夏向学,刘德旺,张金福,吴传实,李启兴,王浩瑞,陆睿. 基于FHH分形理论的隆德煤矿砂岩微观孔隙研究. 煤矿安全. 2024(10): 179-189 . 本站查看
    8. 王甜甜,方刚,张溪彧,王淑璇. 基于水化学和氢氧同位素特征的敏东一矿水源定性定量研究. 煤矿安全. 2024(10): 190-197 . 本站查看
    9. 董海潮,金鑫. 定向长钻孔疏放老空水技术研究. 中国煤炭地质. 2024(12): 23-27 . 百度学术
    10. 任邓君,蔺成森,霍超,马家辉,许南南. 高家堡煤矿洛河组含水层水文地质特征及水害防治. 陕西煤炭. 2023(06): 119-124+135 . 百度学术
    11. 孙文洁,李文杰,宁殿艳,任凌枫. 我国煤矿水害事故现状、预测及防治建议. 煤田地质与勘探. 2023(12): 185-194 . 百度学术
    12. 彭清源. 贵州瑞丰煤矿开采充水因素分析及涌水量预测. 煤炭与化工. 2023(12): 42-46 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  22
  • HTML全文浏览量:  0
  • PDF下载量:  7
  • 被引次数: 15
出版历程
  • 发布日期:  2022-06-19

目录

    /

    返回文章
    返回