• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

基于纳米纤维素的接枝共聚型高分子抑尘剂制备与性能研究

边素素, 胡相明, 贺正龙, 李苗苗, 赵艳云

边素素, 胡相明, 贺正龙, 李苗苗, 赵艳云. 基于纳米纤维素的接枝共聚型高分子抑尘剂制备与性能研究[J]. 煤矿安全, 2022, 53(5): 32-39.
引用本文: 边素素, 胡相明, 贺正龙, 李苗苗, 赵艳云. 基于纳米纤维素的接枝共聚型高分子抑尘剂制备与性能研究[J]. 煤矿安全, 2022, 53(5): 32-39.
BIAN Susu, HU Xiangming, HE Zhenglong, LI Miaomiao, ZHAO Yanyun. Preparation and performance of grafted copolymerized polymer dust suppressant based on nanocellulose[J]. Safety in Coal Mines, 2022, 53(5): 32-39.
Citation: BIAN Susu, HU Xiangming, HE Zhenglong, LI Miaomiao, ZHAO Yanyun. Preparation and performance of grafted copolymerized polymer dust suppressant based on nanocellulose[J]. Safety in Coal Mines, 2022, 53(5): 32-39.

基于纳米纤维素的接枝共聚型高分子抑尘剂制备与性能研究

Preparation and performance of grafted copolymerized polymer dust suppressant based on nanocellulose

  • 摘要: 为降低煤炭粉尘带来的环境负担与人类健康危害,采用接枝共聚的方法,选择纳米纤维素为主结构材料,将丙烯酸单体接枝至主体结构,并加入一定含量润湿剂(十二烷基苯磺酸钠),制备了1种兼并保湿、凝并的接枝共聚型高分子抑尘剂材料。借助黏度及保水性指标确定了抑尘剂喷洒的最佳体积分数为0.5%;通过测试酸碱度、表面张力、傅里叶红外光谱(FT-IR)以及热重分析(TG-DTG),确定其物理化学性质,结果表明:2种单体发生接枝反应,反应物有良好的热稳定性,且对环境及设备无损害。利用接触角实验验证该抑尘剂与煤样之间的接触角为28.32°,60 min内的渗透深度达5.25 cm,具备良好的润湿性能;采用扫描电子显微镜(SEM)观察分析抑尘剂的抑尘机制,抗蒸发性实验表明可防御50 ℃的高温环境;风蚀性实验结果显示,在9 m/s风速下,抑尘效率可达98%,具有良好的凝并与保湿效应。
    Abstract: In order to reduce the environmental burden and human health hazards caused by coal dust, in this paper, the method of graft copolymerization was adopted. Nanocellulose was selected as the main structural material, grafting acrylic monomer to the main structure, and adding a certain amount of wetting agent(sodium dodecyl-benzene sulfonate), a graft copolymerized polymer dust suppressant with properties of moisture and coagulation is prepared. According to the viscosity and water retention indexes, the optimal volume fraction of dust suppressant spraying was determined to be 0.5%. Surface tension, pH, FT-IR and TG-DTG were tested to determine their physical and chemical properties. The results showed that the two monomers were grafted, and the reactants had good thermal stability, and no damage to the environment and equipment. The contact angle experiment was used to verify that the contact angle between the dust inhibitor and the coal sample was 28.32°. The penetration depth reached 5.25 cm within 60 min, so it had good wettability. Scanning electron microscope was used to analyze the dust suppression mechanism of dust suppressor. The evaporation resistance test shows that it can resist the high temperature environment of 50 ℃. The results ofthe wind erosion test showed that the dust suppression efficiency could reach 98% under the wind speed of 9 m/s. It had a good condensation and moisturizing effect.
  • [1] 袁亮.煤矿粉尘防控与职业安全健康科学构想[J].煤炭学报,2020,45(1):1-7.

    YUAN Liang. Scientific conception of coal mine dust control and occupational safety[J]. Journal of China Coal Society, 2020, 45(1): 1-7.

    [2] 程卫民,周刚,陈连军,等.我国煤矿粉尘防治理论与技术20年研究进展及展望[J].煤炭科学技术,2020, 48(2):1-20.

    CHENG Weimin, ZHOU Gang, CHEN Lianjun, et al. Research progress and prospect of dust control theory and technology in China’s coal mines in the past 20 years[J]. Coal Science and Technology, 2020, 48(2): 1-20.

    [3] 王鹏飞,王新喆,刘岩.我国煤矿抑尘剂研究现状及展望[J].化工矿物与加工,2021,50(12):49-54.

    WANG Pengfei, WANG Xinzhe, LIU Yan. Research status and prospect of dust suppressants in Chinese coal mines[J]. Industrial Minerals & Processing, 2021, 50(12): 49-54.

    [4] 彭亚,蒋仲安,付恩琦,等.综采工作面煤层注水防尘优化及效果研究[J].煤炭科学技术,2018,46(1):224-230.

    PENG Ya, JIANG Zhong’an, FU Enqi, et al. Study on seam water injection and dust control optimization and effect of fully-mechanized coal mining face[J]. Coal Science and Technology, 2018, 46(1): 224-230.

    [5] WANG Hetang, WANG Chen, WANG Deming. The influence of forced ventilation airflow on water spray for dust suppression on heading face in underground coal mine[J]. Powder Technology, 2017, 320: 498-510.
    [6] 李凯崇,杨柳,蒋富强,等.改性木质素磺酸盐煤炭抑尘剂的制备与研究[J].环境工程,2012,30(1):66.

    LI Kaichong, YANG Liu, JIANG Fuqiang, et al. Preparation and research on a coal dust suppressant from modified lignosulfonates[J]. Environmental Engineering, 2012, 30(1): 66.

    [7] Wang Li W. Investigation dust suppressant for the ash field of coal-fired power plant[C]//International Conference on Remote Sensing, Environment and Transportation Engineering. IEEE, 2011: 4129.
    [8] 李明,赖慧楠,关子杰,等.复合型水雾抑尘剂作用机理与优选方法研究[J].中国安全生产科学技术,2021, 17(6):143-148.

    LI Ming, LAI Huinan, GUAN Zijie, et al. Study on action mechanism and optimal selection method of compound water mist dust suppressant[J]. Journal of Safety Science and Technology, 2021, 17(6): 143-148.

    [9] 杨树莹,周磊,杨林军,等.高分子抑尘剂对褐煤矿场细颗粒物的抑制特性[J].煤炭学报,2019,44(2):528-535.

    YANG Shuying, ZHOU Lei, YANG Linjun, et al. Inhibition characteristics of polymer suppressant on fine particles in lignite mines[J]. Journal of China Coal Society, 2019, 44(2): 528-535.

    [10] 罗瑞冬,林木松,罗运柏,等.新型煤尘抑尘剂的制备及特性[J].煤炭学报,2016,41(S2):454-459.

    LUO Ruidong, LIN Musong, LUO Yunbai, et al. Preparation and properties of a new type of coal dust suppressant[J]. Journal of China Coal Society, 2016, 41(S2): 454-459.

    [11] 潘红卫,王钰颖,张志学.露天煤场复合型抑尘剂的制备与特性研究[J].矿业研究与开发,2020,40(4):95-99.

    PAN Hongwei, WANG Yuying, ZHANG Zhixue. Study on preparation and characteristics of composite dust suppressant in open coal yard[J]. Mining Research and Development, 2020, 40(4): 95-99.

    [12] Wu Mingyue, Hu Xiangming, Zhang Qian, et al. Preparation and performance evaluation of environment-friendly biological dust suppressant[J]. Journal of Cleaner Production, 2020, 273: 123162.
    [13] LI Shuailong, ZHOU Gang, LIU Zongqi, et al. Synthesis and performance characteristics of a new ecofriendly crust-dust suppressant extracted from waste paper for surface mines[J]. Journal of Cleaner Production, 2020, 258: 120620.
    [14] DING Jianfei, ZHOU Gang, LIU Dong, et al. Synthesis and Performance of a novel high-efficiency coal dust suppressant based on self-healing gel[J]. Environmental Science & Technology, 2020, 54(13): 7992-8000.
    [15] 邵长优.具有强韧自愈性能的纳米纤维素复合水凝胶制备和应用研究[D].北京:北京林业大学,2020:33-50.
    [16] 冯建平,严国超,王朋飞,等.新型可降解纳米纤维素抑尘剂的制备及特征分析[J].矿业研究与开发,2020, 40(7):106-110.

    FENG Jianping, YAN Guochao, WANG Pengfei, et al. Preparation and characteristic analysis of a new degradable nano-cellulose dust suppressant[J]. Mining Research and Development, 2020, 40(7): 106-110.

    [17] 霍丹,张希鹏,孙悦凯,等.纳米纤维素吸附材料的制备及在工业废水处理中的应用[J].中国造纸,2021, 40(11):90-97.

    HUO Dan, ZHANG Xipeng, SUN Yuekai, et al. Research progress on the preparation and application of nanocellulose adsorbent in industrial wastewater treatment[J]. China Pulp & Paper, 2021, 40(11): 90-97.

    [18] 路洁,李明星,周奕杨,等.纳米纤维素的制备及其在水凝胶领域的应用研究进展[J].中国造纸,2021,40(11):107-117.

    LU Jie, LI Mingxing, ZHOU Yiyang, et al. Research advances in the preparation of nanocellulose and its applications in the field of hydrogels[J]. China Pulp & Paper, 2021, 40(11): 107-117.

    [19] 陈一钒.纤维素纳米晶体/丙烯酸/丙烯酰胺复合水凝胶的制备及性能研究[D].杭州:浙江农林大学,2020:40-50.
    [20] 王振宇.微波聚合复合型抑尘剂的机理及性能研究[D].太原:太原理工大学,2019:44-58.
    [21] 鲁俊良.纳米纤维素的功能化改性及应用研究[D].青岛:青岛科技大学,2021:33-56.
    [22] 周益名.纳米纤维素复合凝胶的制备和表征及其物化性能增强的研究[D].广州:华南理工大学,2014:44-66.
    [23] 周刘佳,叶代勇.丙烯酸单体接枝纳米纤维素晶须[J].精细化工,2010,27(7):720-725.

    ZHOU Liujia, YE Daiyong. Nanocellulose Whiskers grafted with acrylic monomers[J]. Fine Chemicals, 2010, 27(7): 720-725.

  • 期刊类型引用(9)

    1. 秦剑云,刘涛,李东涛,李小超. 基于D-优化设计法的抑尘剂制备及性能研究. 煤矿安全. 2025(03): 84-92 . 本站查看
    2. 李俊峰,石建军. 三元共聚生物质基矿山爆破抑尘剂的制备及性能研究. 河南化工. 2024(02): 9-13 . 百度学术
    3. 任强,于学雷,佟林全,张震,高娜,周天勤,马春国,蒋自强. 矿井高效抑尘剂优化配方及性能研究. 煤矿安全. 2024(05): 114-121 . 本站查看
    4. 詹召伟,葛俊岭,徐振,刘涛. 基于高分子增透剂的煤层注水增渗作用分析. 能源与环保. 2024(05): 84-90 . 百度学术
    5. 方宏萍,秦语漩,竹涛,李桂贤,马连刚,谢天航. 秸秆基新型道路抑尘剂的制备与应用. 化工环保. 2024(03): 417-426 . 百度学术
    6. 龙娟,李宇展,李志强,钟土华. 纳米纤维素的点击反应改性及应用研究进展. 材料导报. 2024(17): 288-297 . 百度学术
    7. 王晚婷,杜顺成. 施工场地环保型抑尘剂配方优化与性能研究. 佳木斯大学学报(自然科学版). 2024(11): 59-64 . 百度学术
    8. 石建军,吴俊杰,李烨,宋泉东,李俊峰,李超. 纤维素基运矿道路抑尘剂的制备及应用. 安徽理工大学学报(自然科学版). 2023(02): 59-65 . 百度学术
    9. 陈增杰,王立杰,魏建凤. 环保型双网络水凝胶抑尘剂的性能研究. 煤矿安全. 2023(10): 43-49 . 本站查看

    其他类型引用(6)

计量
  • 文章访问数:  50
  • HTML全文浏览量:  7
  • PDF下载量:  63
  • 被引次数: 15
出版历程
  • 发布日期:  2022-05-19

目录

    /

    返回文章
    返回