不同变质程度烟煤的传热特性实验研究
Experimental study on heat transfer characteristics of bituminous coal with different metamorphic degrees
-
摘要: 为了探究煤火发展规律,选取大柳塔煤矿长焰煤、兴隆庄煤矿气煤、丁集煤矿焦煤和王家岭煤矿贫瘦煤,采用激光导热仪FLA 457分析煤样在空气气氛中30~300 ℃内的比热容、热扩散系数和导热系数随温度的变化趋势,并采用灰色关联方法掌握灰分、水分等参数分别与煤比热容、热扩散系数和导热系数之间的相关性。结果表明:随着温度的升高,热扩散系数先减小后增大,比热容先增大后趋于稳定,导热系数先缓慢增加后快速增大,且大柳塔煤矿长焰煤的热扩散系数和导热系数最小,丁集煤矿焦煤的热扩散系数和导热系数最大,这是由于煤中挥发分、灰分及固定碳对煤热物性参数的变化贡献较大。Abstract: To investigate the development tendency of coal fires, the long-flame coal, gas coal, coking coal, and meager-mean coal from Daliuta Coal Mine, Xinglongzhuang Coal Mine, Dingji Coal Mine, and Wangjialing Coal Mine were selected, and the laser-flash apparatus FLA 457 was adopted to analyze the change of specific heat capacity, thermal diffusivity, and thermal conductivity of each coal under air atmosphere from 30 ℃ to 300 ℃. The grey correlation method was used to master the relation between basic parameters(moisture, ash, volatiles, and fixed carbon) and thermophysical parameters (thermal diffusivity, specific heat capacity, and thermal conductivity). Results indicated that as temperature increased, the thermal diffusivity decreased and then increased, specific heat capacity rose and then tended to be steady, and thermal conductivity increased and then rapidly increased. Furthermore, the thermal diffusivity and thermal conductivity of long-flame coal from Daliuta Coal Mine were the smallest, but those of coking coal from Dingji Coal Mine were the largest, this phenomenon can be explained that the volatiles, ash, and fixed carbon in coal contribute greatly to the change of coal thermophysical parameters.
-
-
[1] 赵婧昱,宋佳佳,郭涛,等.基于煤火发展演化的松散煤体自燃温度纵深蔓延特征[J].煤炭学报,2021,46(6):1759-1767. ZHAO Jingyu, SONG Jiajia, GUO Tao, et al. Temperature field migration characteristics of loose coal based on experimental scale[J]. Journal of China Coal Society, 2021, 46(6): 1759-1767.
[2] 林柏泉,李庆钊,周延.煤矿采空区瓦斯与煤自燃复合热动力灾害多场演化研究进展[J].煤炭学报,2021, 46(6):1715-1726. LIN Baiquan, LI Qingzhao, ZHOU Yan. Research advances about multi-field evolution of coupled thermodynamic disasters in coal mine goaf[J]. Journal of China Coal Society, 2021, 46(6): 1715-1726.
[3] Kong B, Li Z, Wang E, et al. An experimental study for characterization the process of coal oxidation and spontaneous combustion by electromagnetic radiation technique[J]. Process Safety and Environmental Protection, 2018, 119: 285-294. [4] Song Z, Kuenzer C. Coal fires in China over the last decade: a comprehensive review[J]. International Journal of Coal Geology, 2014, 133: 72-99. [5] 刘竞龙,汪云甲,闫世勇,等.乌鲁木齐东侧煤火多源遥感融合探测[J].煤矿安全,2019,50(8):158-161. LIU Jinglong, WANG Yunjia, YAN Shiyong, et al. Multi-source remote sensing fusion detection of coal fire in Eastern Urumchi[J]. Safety in Coal Mines, 2019, 50(8): 158-161.
[6] 陈琛.煤自燃过程中温室气体排放的量化实验研究[D].北京:中国矿业大学(北京),2016. [7] Wen H, Lu J, Xiao Y, et al. Temperature dependence of thermal conductivity, diffusion and specific heat capacity for coal and rocks from coalfield[J]. Thermochimica acta, 2015, 619: 41-47. [8] 马砺,魏高明,李珍宝,等.煤导热系数影响因素的实验研究[J].矿业安全与环保,2017,44(2):31-34. MA Li, WEI Gaoming, LI Zhenbao, et al. Experimental study on influence factors of thermal conductivity of coal[J]. Mining Safety & Environmental Protection, 2017, 44(2): 31-34.
[9] 肖旸,尹岚,马砺,等.不同预氧化温度下煤样热物性参数的实验研究[J].西安科技大学学报,2018,38(3):383-388. XIAO Yang, YIN Lan, MA Li, et al. Experimental study on coal thermo-physical parameters under the different peroxidation temperature[J]. Journal of Xi’an University of Science and Technology, 2018, 38(3): 383-388.
[10] Xiao Y, Yin L, Deng J, et al. Thermophysical parameters of coal with various levels of preoxidation[J]. Journal of Thermal Analysis and Calorimetry, 2019, 135(5): 2819-2829. [11] Deng J, Li QW, Xiao Y, et al. Experimental study on the thermal properties of coal during pyrolysis, oxidation, and re-oxidation[J]. Applied Thermal Engineering, 2017, 110: 1137-1152. [12] Deng J, Ren SJ, Xiao Y, et al. Thermal properties of coals with different metamorphic levels in air atmosphere[J]. Applied Thermal Engineering, 2018, 143: 542-549. [13] 张辛亥,周山林,拓龙龙,等.不同程度预氧化煤传热特性[J].西安科技大学学报,2019,39(5):761-766. ZHANG Xinhai, ZHOU Shanlin, TUO Longlong, et al. Transfer characteristics of coal under different preoxidation degree[J]. Journal of Xi’an University of Science and Technology, 2019, 39(5): 761-766.
[14] 周西华,徐丽娜,宋东平,等.大同矿区煤的导热系数灰色关联分析及预测[J].中国安全生产科学技术,2016,12(2):78-82. ZHOU Xihua, XU Lina, SONG Dongping, et al. Grey relational analysis and prediction on thermal conductivity of coal in Datong mining area[J]. Journal of Safety Science and Technology, 2016, 12(2): 78-82.
[15] Yin L, Xiao Y, Zhong KQ, et al. Temperature effects on thermal diffusivity of bituminous coal using different pre-oxidation levels in a nitrogenous atmosphere[J]. Fuel, 2021, 288: 119640. [16] Agarwal T. Influence of measurement parameters of laser flash analysis on the observed thermal diffusivity and the choice of parameters to get repeatable measurements[J]. Journal of Thermal Analysis and Calor-imetry, 2018, 134(2): 1183-1203. [17] 肖旸,尹岚,吕慧菲,等.咪唑类离子液体处理煤热失重以及传热特性[J].煤炭学报,2019,44(2):520. XIAO Yang, YIN Lan, L?譈 Huifei, et al. Characteristic of weight loss and heat transfer for the imidazolium-based ionic liquids treatment coal[J]. Journal of China Coal Society, 2019, 44(:2): 520.
[18] Deng J, Li QW, Xiao Y, et al. Predictive models for thermal diffusivity and specific heat capacity of coals in Huainan mining area, China[J]. Thermochimica Acta, 2017, 656: 101-111. [19] Xiao Y, Meng X, Yin L, et al. Influence of element composition and microcrystalline structure on thermal properties of bituminous coal under nitrogen atmosphere[J]. Process Safety and Environmental Protection, 2021, 147: 846-856. [20] Ren SJ, Wang CP, Xiao Y, et al. Thermal properties of coal during low temperature oxidation using a grey correlation method[J]. Fuel, 2020, 260: 116287. [21] Maloney DJ, Sampath R, Zondlo JW. Heat capacity and thermal conductivity considerations for coal particles during the early stages of rapid heating[J]. Combustion and Flame, 1999, 116(1/2): 94-104. [22] 鲁军辉.煤田火区煤岩体热物性参数及热破坏特性研究[D].西安:西安科技大学,2016. [23] Turian RM, Sung DJ, Hsu FL. Thermal conductivity of granular coals, coal-water mixtures and multi-solid/liquid suspensions[J]. Fuel, 1991, 70(10): 1157. [24] Ramazanova AE, Abdulagatov IM, Ranjith PG. Temperature effect on the thermal conductivity of black coal[J]. Journal of Chemical & Engineering Data, 2018, 63(5): 1534-1545. -
期刊类型引用(5)
1. 王凯,王喆,韩涛,邓军,张嬿妮. 表面横向风流作用下煤体的内部燃烧蔓延规律. 工程科学学报. 2024(02): 187-198 . 百度学术
2. 王飞,孙文亮,王海平,刘红亮,柴虎峰,李云鹏,肖旸,刘凯. 采空区注液氮降温对煤自燃热物理特性的影响研究. 煤矿安全. 2024(07): 102-109 . 本站查看
3. 任帅京,尹岚,肖旸,何骞,屈高阳,王津睿. 预氧化不粘煤自燃过程热输运特性研究. 陕西煤炭. 2023(03): 18-23 . 百度学术
4. 王俊红,高宏,刘东. 不同变质程度煤芳香结构对传热特性的影响. 煤炭工程. 2023(09): 122-126 . 百度学术
5. 邢婧. 不同变质程度煤样活性基团变化与传热特性研究. 矿业安全与环保. 2023(05): 82-87 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 40
- HTML全文浏览量: 0
- PDF下载量: 11
- 被引次数: 5