采空区注液氮降温对煤自燃热物理特性的影响研究

    王飞, 孙文亮, 王海平, 刘红亮, 柴虎峰, 李云鹏, 肖旸, 刘凯

    王飞,孙文亮,王海平,等. 采空区注液氮降温对煤自燃热物理特性的影响研究[J]. 煤矿安全,2024,55(7):102−109. DOI: 10.13347/j.cnki.mkaq.20231691
    引用本文: 王飞,孙文亮,王海平,等. 采空区注液氮降温对煤自燃热物理特性的影响研究[J]. 煤矿安全,2024,55(7):102−109. DOI: 10.13347/j.cnki.mkaq.20231691
    WANG Fei, SUN Wenliang, WANG Haiping, et al. Study on the influence of liquid nitrogen injection cooling in gob on the thermal physical characteristics of coal spontaneous combustion[J]. Safety in Coal Mines, 2024, 55(7): 102−109. DOI: 10.13347/j.cnki.mkaq.20231691
    Citation: WANG Fei, SUN Wenliang, WANG Haiping, et al. Study on the influence of liquid nitrogen injection cooling in gob on the thermal physical characteristics of coal spontaneous combustion[J]. Safety in Coal Mines, 2024, 55(7): 102−109. DOI: 10.13347/j.cnki.mkaq.20231691

    采空区注液氮降温对煤自燃热物理特性的影响研究

    详细信息
      作者简介:

      王 飞(1988—),男,陕西咸阳人,工程师,学士,从事煤矿“一通三防”方面的工作。E-mail:3401309267@qq.com

    • 中图分类号: TD75+2.2

    Study on the influence of liquid nitrogen injection cooling in gob on the thermal physical characteristics of coal spontaneous combustion

    • 摘要:

      为了研究注液氮降温对煤自燃的影响,选取亭南煤矿二盘区和三盘区煤样进行热物性实验。首先通过LFA457激光闪射仪对煤样进行预处理,再测定煤样30~300 ℃范围内的热物性参数,得到注液氮降温后煤样热物性参数随温度的变化规律,对比分析注液氮前后影响煤样热物理性质的因素。结果表明:注液氮处理前后的煤样,二者的热扩散系数都随着温度的升高而降低,比热容与导热系数随着温度的升高而上升;在30~200 ℃范围内,注液氮处理后煤样的热物性参数平均变化率高于原煤样,说明注液氮处理会增加煤样对温度的敏感性;此外,在相同温度下,注液氮处理后煤样热物性参数相较原煤样均有不同程度的上升,热扩散系数平均增长率最高,表明注液氮处理后的煤样在氧化升温过程中热扩散能力增强。

      Abstract:

      In order to study the effect of liquid nitrogen injection cooling on spontaneous combustion of coal, coal samples from the second and third panel areas of Tingnan Coal Mine were selected for thermal and physical property experiments. First, the coal sample was pretreated by LFA457 laser flash analyzer, and then the thermophysical property parameters of the coal sample were measured in the range of 30-300 ℃, and the change law of the thermophysical property parameters of the coal sample with temperature was obtained after liquid nitrogen injection and cooling, and the factors affecting the thermophysical properties of the coal sample were compared and analyzed. The results show that the thermal diffusivity decreases with the increase of temperature, and the specific heat capacity and thermal conductivity increase with the increase of temperature; in the range of 30-200 ℃, the average change rate of thermal property parameters of coal samples after liquid nitrogen injection treatment is higher than that of raw coal samples, indicating that liquid nitrogen injection treatment will increase the sensitivity of coal samples to temperature; in addition, at the same temperature, the thermal physical property parameters of coal samples after liquid nitrogen injection treatment increased to different degrees compared with the original coal samples, and the average growth rate of thermal diffusion coefficient was the highest, indicating that the thermal diffusion ability of coal samples after liquid nitrogen injection treatment was enhanced during the oxidation and heating process.

    • 图  1   激光导热原理

      Figure  1.   Laser pyrometer theory

      图  2   压片后煤样试件

      Figure  2.   Coal sample specimens after compression

      图  3   热扩散系数随温度的变化趋势

      Figure  3.   The variation trend of thermal diffusion coefficient with temperature

      图  4   比热容随温度的变化趋势

      Figure  4.   The trend of specific heat capacity with temperature

      图  5   煤样导热系数参数随温度的变化趋势

      Figure  5.   Variation trend of thermal conductivity parameters of coal samples with temperature

      图  6   热物性参数的平均变化率

      Figure  6.   The average change rate of thermophysical property parameters

      图  7   热物性参数的增长率

      Figure  7.   Growth rate of thermophysical parameters

      表  1   煤样工业分析结果

      Table  1   Industrial analysis results of coal samples

      煤样 Mad/% Aad/% Vad/% FCad/%
      二盘区煤样 2.13 8.00 27.78 62.09
      三盘区煤样 4.73 6.22 27.53 61.52
        注:Mad为水分;Aad为灰分;Vad为挥发分;FCad为固定碳。
      下载: 导出CSV

      表  2   煤样薄片的相关属性

      Table  2   Interrelated characteristics of coal slices

      名称 标号 质量/mg 直径/mm 厚度/mm 密度/(g·cm−3)
      二盘区 A1 151.7 12.91 1.07 1.084
      A2 152.7 12.89 0.98 1.149
      A3 151.2 12.84 1.01 1.156
      A4 149.8 12.89 0.93 1.235
      A5 151.3 12.84 1.02 1.146
      A6 153.1 12.86 1.13 1.043
      三盘区 B1 151.7 12.90 1.17 0.993
      B2 153.5 12.81 1.16 1.027
      B3 151.3 12.88 1.03 1.127
      B4 151.4 12.96 1.00 1.148
      B5 151.2 12.97 1.18 0.970
      B6 150.5 12.84 1.07 1.056
      下载: 导出CSV
    • [1] 邓军,李贝,王凯,等. 我国煤火灾害防治技术研究现状及展望[J]. 煤炭科学技术,2016,44(10):1−7.

      DENG Jun, LI Bei, WANG Kai, et al. Research status and outlook on prevention and control technology of coal fire disaster in China[J]. Coal Science and Technology, 2016, 44(10): 1−7.

      [2] 邓军,李贝,李珍宝,等. 预报煤自燃的气体指标优选试验研究[J]. 煤炭科学技术,2014,42(1):55−59.

      DENG Jun, LI Bei, LI Zhenbao, et al. Experiment study on gas indexes optimization for coal spontaneous combustion prediction[J]. Coal Science and Technology, 2014, 42(1): 55−59.

      [3]

      AAROGLU O, ERGIN H. A new method to evaluate road header operational stability[J]. Tunnelling and Underground Space Technology, 2006(21): 172−179.

      [4] 马砺,邓军,王伟峰,等. CO2对煤低温氧化反应过程的影响实验研究[J]. 西安科技大学学报,2014,34(4):379−383.

      MA Li, DENG Jun, WANG Weifeng, et al. Experimental study of effect of CO2 on low temperature oxidation reaction process for coal[J]. Journal of Xi’an University of Science and Technology, 2014, 34(4): 379−383.

      [5] 王刚. 液态CO2灌注技术在矿井防灭火中的应用与分析[J]. 煤炭科学技术,2017,45(S1):89−93.

      WANG Gang. Application and analysis of liquid CO2 infusion technology in mine fire prevention and control[J]. Coal Science and Technology, 2017, 45(S1): 89−93.

      [6] 文虎,李珍宝,王旭,等. 液态CO2溶浸作用下煤体孔隙结构损伤特性研究[J]. 西安科技大学学报,2017,37(2):149−153.

      WEN Hu, LI Zhenbao, WANG Xu, et al. Characteristics of coal porous structure damage subjected to liquid carbon dioxide cooling[J]. Journal of Xi'an University of Science and Technology, 2017, 37(2): 149−153.

      [7] 岳高伟,李豪君,王兆丰. 基于二分法的松散煤体导热系数研究[J]. 矿业安全与环保,2015,42(1):19−22. doi: 10.3969/j.issn.1008-4495.2015.01.006

      YUE Gaowei, LI Haojun, WANG Zhaofeng, et al. Study on heat conductivity coefficient of loose coal based on dichotomy[J]. Mining Safety & Environmental Protection, 2015, 42(1): 19−22. doi: 10.3969/j.issn.1008-4495.2015.01.006

      [8] 彭担任,赵全富,胡兰文,等. 煤与岩石的导热系数研究[J]. 矿业安全与环保,2000,27(6):16−18. doi: 10.3969/j.issn.1008-4495.2000.06.008

      PENG Danren, ZHAO Quanfu, HU Lanwen, et al. Study on thermal conductivity of coal and rock[J]. Mining Safety & Environmental Protection, 2000, 27(6): 16−18. doi: 10.3969/j.issn.1008-4495.2000.06.008

      [9] 肖旸,陈龙刚,李青蔚,等. 低温条件下煤的热物性参数试验研究[J]. 安全与环境学报,2018,18(6):2190−2194.

      XIAO Yang, CHEN Longgang, LI Qingwei, et al. Identification and determination of the thermophysical properties of coal at lower temperature[J]. Journal of Xi'an University of Science and Technology, 2018, 18(6): 2190−2194.

      [10] 肖旸,尹岚,马砺,等. 不同预氧化温度下煤样热物性参数的实验研究[J]. 西安科技大学学报,2018,38(3):383−388.

      XIAO Yang, YIN Lan, MA Li, et al. Experimental study on coal thermo-physical parameters under the different peroxidation temperature[J]. Journal of Xi’an University of Science and Technology, 2018, 38(3): 383−388.

      [11] 刘东. 不同变质程度烟煤的传热特性实验研究[J]. 煤矿安全,2022,53(4):45−50.

      LIU Dong. Experimental study on heat transfer characteristics of bituminous coal with different metamorphic degrees[J]. Safety in Coal Mines, 2022, 53(4): 45−50.

      [12] 刘东,胡乐天. 咪唑类离子液体对煤传热特性的影响实验研究[J]. 煤矿安全,2022,53(6):44−49.

      LIU Dong, HU Letian. Experimental study on effects of imidazolium-based ionic liquids on heat transfer characteristics of coal[J]. Safety in Coal Mines, 2022, 53(6): 44−49.

      [13] 王新堂,赵玉桃,马德,等. 变氧体积分数条件下烟煤自燃传热特性研究[J]. 煤矿安全,2023,54(3):123−130.

      WANG Xintang, ZHAO Yutao, MA De, et al. Study on the heat transfer characteristics of bituminous coal spontaneous combustion under variable oxygen volume fraction condition[J]. Safety in Coal Mines, 2023, 54(3): 123−130.

      [14]

      PARKER W J, JENKINS R J. Thermal conductivity measurements on bismuth telluride in the presence of a 2 MeV electron beam[J]. Advanced Energy Conversion, 1962(2): 87−103.

      [15]

      COWAN R D. Proposed method of measuring thermal diffusivity at high temperatures[J]. Journal of Applied Physics, 1961, 32(7): 1363−1370. doi: 10.1063/1.1736235

      [16]

      COWAN R D. Pulse method of measuring thermal diffusivity at high temperatures[J]. Journal of Applied Physics, 1963, 34(4): 926−927. doi: 10.1063/1.1729564

      [17] 邓军,李青蔚,肖旸,等. 原煤和氧化煤的低温氧化特性[J]. 西安科技大学学报,2018,38(1):1−7.

      DENG Jun, LI Qingwei, XIAO Yang, et al. Characteristics of low-temperature oxidation of raw and oxidized coals[J]. Journal of Xi’an University of Science and Technology, 2018, 38(1): 1−7.

      [18] 张辛亥,周山林,拓龙龙,等. 不同程度预氧化煤传热特性[J]. 西安科技大学学报,2019,39(5):761−766.

      ZHANG Xinhai, ZHOU Shanlin, TUO Longlong, et al. Transfer characteristics of coal under different preo-xidation degree[J]. Journal of Xi’an University of Science and Technology, 2019, 39(5): 761−766.

      [19] 王凯,翟小伟,王炜罡,等. 氧浓度与风量对煤热物性参数影响的实验研究[J]. 西安科技大学学报,2018,38(1):31−36.

      WANG Kai, ZHAI Xiaowei, WANG Weigang, et al. Influence of oxygen concentration and blowing rate on thermal properties of coal[J]. Journal of Xi’an University of Science and Technology, 2018, 38(1): 31−36.

      [20] 张嬿妮. 煤氧化自燃微观特征及其宏观表征研究[D]. 西安:西安科技大学,2012.
      [21] 李珍宝,王凤双,魏高明,等. 液态CO2溶浸无烟煤的氧化动力学特征[J]. 煤炭学报,2020,45(S1):330−335.

      LI Zhenbao, WANG Fengshuang, WEI Gaoming, et al. Oxidation reaction and kinetics of anthracite infiltrated by liquid CO2[J]. Journal of China Coal Society, 2020, 45(S1): 330−335.

      [22]

      MALONEY D J, SAMPATH R, ZONDLO J W. Heat capacity and thermal conductivity considerations for coal 5 particles during the early stages of rapid heating[J]. Combustion and Flame, 1999, 116: 94−104. doi: 10.1016/S0010-2180(98)00044-3

    • 期刊类型引用(1)

      1. 孔令帅,栗继祖. 安全基地型领导对新生代矿工安全参与行为的影响研究. 煤炭经济研究. 2025(02): 170-176 . 百度学术

      其他类型引用(0)

    图(7)  /  表(2)
    计量
    • 文章访问数:  25
    • HTML全文浏览量:  0
    • PDF下载量:  4
    • 被引次数: 1
    出版历程
    • 收稿日期:  2023-11-23
    • 修回日期:  2024-01-05
    • 刊出日期:  2024-07-19

    目录

      /

      返回文章
      返回