复合储层层间窜流对瓦斯抽采的影响机制研究
Influence of interlayer channeling of composite reservoir on gas drainage
-
摘要: 为了考察复合储层中围岩特性对穿层钻孔瓦斯抽采的影响,分析了煤层和岩层内瓦斯的渗流规律,基于建立的复合储层和单一储层瓦斯抽采流固耦合模型,模拟研究了不同倾角的穿层钻孔对复合储层和单一储层的瓦斯抽采效果,以及多钻孔耦合下的穿层钻孔瓦斯抽采效果。结果表明:相同钻孔抽采不同储层的煤层瓦斯时,复合储层比单一储层抽采瓦斯的抽采影响半径和有效半径大,抽采效果更好;不同倾角的钻孔对复合储层的瓦斯抽采影响不同,瓦斯抽采影响范围随夹角的增大呈降低趋势,层间窜流的影响也随之呈减弱趋势;在多钻孔耦合抽采下,复合储层中下部煤层的瓦斯压力明显低于单一储层中相同位置的瓦斯压力。Abstract: In order to investigate the influence of surrounding rock characteristics on gas drainage of through layer borehole in composite reservoir, the seepage law of gas in coal seam and rock stratum is analyzed. Based on the fluid solid coupling model of gas drainage in composite reservoir and single reservoir, the gas drainage effect of cross layer borehole with different dip angles on composite reservoir and single reservoir, and gas drainage by crossing hole coupling with multiple boreholes are simulated. The results show that the influence radius and effective radius of gas drainage from composite reservoir are larger than that of single reservoir when the same drilling hole is used to extract coal seam gas from different reservoirs; the influence range of gas drainage in composite reservoir is decreased with the increase of angle, and the influence of interlayer channeling is also weakened; under the condition of multi-borehole coupling drainage, the gas pressure of the middle and lower coal seams in the composite reservoir is obviously lower than that in the same position in the single reservoir.
-
-
[1] 谢和平,吴立新,郑德志.2025年中国能源消费及煤炭需求预测[J].煤炭学报,2019,44(7):1949-1960. XIE Heping, WU Lixin, ZHENG Dezhi. Prediction on the energy consumption and coal demand of China in 2025[J]. Journal of China Coal Society, 2019, 44(7):1949-1960.
[2] 刘晓强.煤层气体体积测量方法的研究[D].西安:西安理工大学,2010. [3] 黄茂政.煤层瓦斯赋存与流动理论[J].能源与节能,2016(8):8-9. HAUNG Maozheng. Theory of gas occurrence and flow in coal seam[J]. Energy and Energy Conservation, 2016(8): 8-9.
[4] 张钧祥.基于孔隙-裂隙双重介质特性含瓦斯煤岩动态耦合模型及其应用研究[D].焦作:河南理工大学,2016. [5] 李波,孙东辉,张路路.煤矿顺层钻孔瓦斯抽采合理布孔间距研究[J].煤炭科学技术,2016,44(8):121. LI Bo, SUN Donghui, ZHANG Lulu. Study on rational space between gas drainage boreholes passing through seam in coal mine[J]. Coal Science and Technology, 2016, 44(8): 121.
[6] 梁冰,袁欣鹏,孙维吉.本煤层瓦斯抽采渗流模型及数值模拟[J].安全与环境学报,2015,15(5):95-99. LIANG Bing, YUAN Xinpeng, SUN Weiji. Seepage model and numerical simulation of inseam gas extraction[J]. Journal of Safety and Environment, 2015, 15(5): 95-99.
[7] 吴世跃.煤层气与煤层耦合运动理论及其应用的研究[D].沈阳:东北大学,2006. [8] 马强.煤层气储层渗透率变化规律理论与实验研究[D].北京:中国矿业大学(北京),2011. [9] 棘理想,朱传杰,任洁.穿层钻孔倾角对瓦斯抽采的影响数值模拟研究[J].煤炭科技,2019,40(4):1-5. JI Lixiang, ZHU Chuanjie, REN Jie. Study on numerical simulation on influences of dip angle of cross boreholes on gas drainage[J]. Coal Science & Technology, 2019, 40(4): 1-5.
[10] 石应东.复合储层瓦斯抽采运移规律及其机理的数值模拟研究[D].太原:太原理工大学,2018. [11] LIU Zhengdong, CHENG Yuanping, JIANG Jingyu, et al. Interactions between coal seam gas drainage boreholes and the impact of such on borehole patterns[J]. Journal of Natural Gas Science & Engineering, 2017, 38: 597-607. [12] DONG Jun, CHENG Yuanping, JIN Kan, et al. Effects of diffusion and suction negative pressure on coalbed methane extraction and a new measure to increase the methane utilization rate[J]. Fuel, 2017, 197: 70-81. [13] LIU Qingquan, CHU Peng, ZHU Jintuo, et al. Numerical assessment of the critical factors in determining coal seam permeability based on the field data[J]. Journal of Natural Gas Science and Engineering, 2019, 74: 103098. [14] 李培超,孔祥言,卢德唐.饱和多孔介质流固耦合渗流的数学模型[J].水动力学研究与进展:A辑,2003(4):419-426. LI Peichao, KONG Xiangyan, LU Detang. Mathematical modeling of flow in saturated porous media on account of fluid-structure coupling effect[J]. Journal of Hydrodynamics: A, 2003(4): 419-426.
[15] 卢平,沈兆武,朱贵旺,等.岩样应力应变全程中的渗透性表征与试验研究[J].中国科学技术大学学报,2002(6):45-51. LU Ping, SHEN Zhaowu, ZHU Guiwang, et al. Characterization and experimental study on the permeability of rock-samples during complete stress-strain course[J]. Journal of University of Science and Technology of China, 2002(6): 45-51.
[16] 刘清泉.煤层瓦斯流动理论简明教程[M].徐州:中国矿业大学出版社,2017. [17] 李立功,康天合,李彦斌.考虑动态克林伯格系数的煤储层渗透率预测模型[J].地球物理学报,2018,61(1):304-310. LI Ligong, KANG Tianhe, LI Yanbin. Prediction model of permeability in coal reservoirs considering the dynamic Klinkenberg coefficient[J]. Chinese Journal of Geophysics, 2018, 61(1): 304-310.
[18] 薄冬梅,赵永军,姜林,等.煤层气储层渗透性研究进展[J].西南石油大学学报(自然科学版),2008,30(6):31-34. BO Dongmei, ZHAO Yongjun, JIANG Lin, et al. Progress of the research on coal-bed gas reservoir permeability[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2008, 30(6): 31-34.
[19] 国家安全生产监督管理总局,国家煤矿安全监察局.防治煤与瓦斯突出规定[M].北京:煤炭工业出版社,2019. [20] 鲁义,申宏敏,秦波涛,等.顺层钻孔瓦斯抽采半径及布孔间距研究[J].采矿与安全工程学报,2015,32(1):156-162. LU Yi, SHEN Hongmin, QIN Botao, et al. Gas drainage radius and borehole distance along seam[J]. Journal of Mining & Safety Engineering, 2015, 32(1): 156-162.
-
期刊类型引用(7)
1. 张玉浩,杨永康,王晨龙. 碎软煤层顶板水力压裂多裂缝穿层扩展规律研究. 煤矿安全. 2024(12): 63-71 . 本站查看
2. 邹庆. 高瓦斯矿井综合治理方案优化研究. 内蒙古煤炭经济. 2024(20): 13-15 . 百度学术
3. 赵鹏翔,常泽晨,李树刚,卓日升,林海飞,金士魁. 厚煤层采空区定向孔分域抽采研究及应用. 中国安全科学学报. 2023(01): 70-79 . 百度学术
4. 张俞. 定向钻冲一体化成孔技术研究. 煤矿机械. 2023(12): 90-92 . 百度学术
5. 马亚东,解振华. 矿井低瓦斯含量煤层工作面预抽必要性论证与分析. 中国煤炭. 2023(S2): 135-139 . 百度学术
6. 王云鹏. 低渗透煤层气井产能数值模拟研究. 能源与节能. 2022(10): 36-38 . 百度学术
7. 王世斌,王刚,陈雪畅,范酒源,迟利辉. 基于PFC~(2D)-COMSOL的煤层水力压裂增透促抽瓦斯数值模拟研究. 煤矿安全. 2022(10): 132-140 . 本站查看
其他类型引用(0)
计量
- 文章访问数: 129
- HTML全文浏览量: 0
- PDF下载量: 166
- 被引次数: 7