• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

长壁工作面开采上行裂隙混合型裂纹扩展机理

曹健, 高斌, 黄庆享

曹健, 高斌, 黄庆享. 长壁工作面开采上行裂隙混合型裂纹扩展机理[J]. 煤矿安全, 2021, 52(12): 188-193.
引用本文: 曹健, 高斌, 黄庆享. 长壁工作面开采上行裂隙混合型裂纹扩展机理[J]. 煤矿安全, 2021, 52(12): 188-193.
Mechanism of upward mixed crack propagation in long wall working face[J]. Safety in Coal Mines, 2021, 52(12): 188-193.
Citation: Mechanism of upward mixed crack propagation in long wall working face[J]. Safety in Coal Mines, 2021, 52(12): 188-193.

长壁工作面开采上行裂隙混合型裂纹扩展机理

Mechanism of upward mixed crack propagation in long wall working face

  • 摘要: 为揭示长壁工作面开采的上行裂隙发育机理,得到其发育高度的确定方法;基于断裂力学混合型裂纹扩展理论,运用断裂力学分析了上行裂隙发育顶端岩层受力状态,分析了上行裂隙发育的判据,提出了上行裂隙发育高度的确定方法;基于混合型裂纹σ(θ)max理论,建立了上行裂隙岩层裂纹扩展理论模型,提出了裂纹扩展与上行裂隙发育的判据。研究表明:随长壁工作面推进,上行裂隙发育可以分为上行裂隙产生段、发育延伸段和稳定段3个阶段,裂纹的扩展表现为混合型裂纹;工作面充分采动后,岩层顶面产生的裂纹在拉应力的作用下沿裂隙带方向向下扩展,若与上行裂隙贯通,导致该岩层完全破断;若外力作用不足以使裂纹扩展贯通该岩层,则上行裂隙不再发育。
    Abstract: In order to reveal the development mechanism of upward fracture in longwall face mining, based on mixed mode fracture extension theory in fracture mechanics, fracture mechanics is applied to analyze the stress state of strata on the top of the upward fracture, the criterion of upward fracture extension is analyzed, and the development height of upward fracture is determined. Results show that with the working face advances, the development of upward fracture can divided into three stages: generation stage, development and extension stage, and stable stage, and the fracture extension is mixed mode fracture. Based on σ(θ)max theory, the fracture extension theoretical model of upward fracture is established, and the criterion of upward fracture extension is proposed. After full mining, under the action of tensile stress, the crack generated on the top of the rock layer expands downward along the direction of the fracture zone. If it is connected with the upward fracture, the rock layer will be completely broken. Otherwise, if the fracture does not extend and cut-through the strata, the upward fracture does not develop, therefore, the development height of the upward fracture is the distance from top of the seam to the bottom of the strata.
  • [1] 钱鸣高,许家林.煤炭开采与岩层运动[J].煤炭学报,2019,44(4):973-984.

    QIAN Minggao, XU Jialin. Behaviors of strata movement in coal mining[J]. Journal of China Coal Society, 2019, 44(4): 973-984.

    [2] 袁亮,张平松.煤炭精准开采透明地质条件的重构与思考[J].煤炭学报,2020,45(7):2346-2356.

    YUAN Liang, ZHANG Pingsong. Framework and thinking of transparent geological conditions for precise mining of coal[J]. Journal of China Coal Society, 2020, 45(7): 2346-2356.

    [3] 王双明,黄庆享,范立民,等.生态脆弱矿区含(隔)水层特征及保水开采分区研究[J].煤炭学报,2010,35(1):7-14.

    WANG Shuangming, HUANG Qingxiang, FAN Limin, et al. Study on overburden aquclude and water protection mining regionazation in the ecological fragile mining area[J]. Journal of China Coal Society, 2010, 35(1): 7-14.

    [4] 黄庆享.浅埋煤层保水开采岩层控制研究[J].煤炭学报,2017,42(1):50-55.

    HUANG Qingxiang. Research on roof control of water conservation mining in shallow seam[J]. Journal of China Coal Society, 2017, 42(1): 50-55.

    [5] 黄庆享.浅埋煤层覆岩隔水性与保水开采分类[J].岩石力学与工程学报,2010,29(S2):3622-3627.

    HUANG Qingxiang. Impermeability of overburden rock in shallow buried coal seam and classification of water conservation mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 3622-3627.

    [6] 张文忠,黄庆享.浅埋煤层局部充填开采上行裂隙发育高度研究[J].煤矿安全,2014,45(4):40-42.

    ZHANG Wenzhong, HUANG Qingxiang. Research on the height of upward crack development in partial backfill mining of shallow seam[J]. Safety in Coal Mines, 2014, 45(4): 40-42.

    [7] 张玉军,张华兴,陈佩佩.覆岩及采动岩体裂隙场分布特征的可视化探测[J].煤炭学报,2008,33(11):1216.

    ZHANG Yujun, ZHANG Huaxing, CHEN Peipei. Visual exploration of fissure field of overburden and rock[J]. Journal of China Coal Society, 2008, 33(11): 1216.

    [8] 贾后省,马念杰,赵希栋.浅埋薄基岩采煤工作面上覆岩层纵向贯通裂隙“张开-闭合”规律[J].煤炭学报,2015,40(12):2787-2793.

    JIA Housheng, MA Nianjie, ZHAO Xidong. “Open-close” law of longitudinal transfixion cracks in shallow buried coal face with thin bedrock[J]. Journal of China Coal Society, 2015, 40(12): 2787-2793.

    [9] 黄庆享,杜君武,侯恩科,等.浅埋煤层群覆岩与地表裂隙发育规律和形成机理研究[J].煤炭学报,2019, 36(1):7-15.

    HUANG Qingxiang, DU Junwu, HOU Enke, et al. Research on overburden and ground surface cracks distribution and formation mechanism in shallow coal seams group mining[J]. Journal of China Coal Society, 2019, 36(1): 7-15.

    [10] 谢晓锋,李夕兵,尚雪义,等.PCA-BP神经网络模型预测导水裂隙带高度[J].中国安全科学学报,2017, 27(3):100-105.

    XIE Xiaofeng, LI Xibing, SHANG Xueyi, et al. Prediction of height of water flowing fractured zone based on PCA-BP neural networks model[J]. China Safety Science Journal, 2017, 27(3): 100-105.

    [11] 张勇,张保,张春雷,等.厚煤层采动裂隙发育演化规律及分布形态研究[J].中国矿业大学学报,2013,42(6):935-940.

    ZHANG Yong, ZHANG Bao, ZHANG Chunlei, et al. Study of the dynamic evolution rules and distribution pattern of mining-induced fracture of thick coal seam[J]. Journal of China University of Mining & Technology, 2013, 42(6): 935-940.

    [12] 王晓振,许家林,韩红凯,等.顶板导水裂隙高度随采厚的台阶式发育特征[J].煤炭学报,2019,44(12):3740-3749.

    WANG Xiaozhen, XU Jialin, HAN Hongkai, et al. Stepped development characteristic of water flowing fracture height with variation of mining thickness[J]. Journal of China Coal Society, 2019, 44(12): 3740.

    [13] 曹祖宝,王庆涛.基于覆岩结构效应的导水裂隙带发育特征[J].煤田地质与勘探,2020,48(3):145-151.

    CAO Zubao, WANG Qingtao. Development characteristic of water conducted fracture zone based on overburden structural effect[J]. Coal Geology & Exploration, 2020, 48(3): 145-151.

    [14] 黄庆享,夏小刚.采动岩层与地表移动的“四带”划分研究[J].采矿与安全工程学报,2016,33(3):393.

    HUANG Qingxiang, XIA Xiaogang. Division of “four zones” in mining strata and surface movement[J]. Journal of Mining & Safety Engineering, 2016, 33(3):393-397.

    [15] 车晓阳,侯恩科,谢晓深,等.煤层开采导水裂隙带发育高度分析[J].中国科技论文,2016,11(3):270.

    CHE Xiaoyang, HOU Enke, XIE Xiaoshen, et al. Analysis on development height of water flowing fractured zone in coal seam mining[J]. China Science Paper, 2016, 11(3): 270-273.

    [16] 白建平,郝春生,杨昌永,等.综采工作面覆岩采动裂隙三维分布规律研究[J].煤炭科学技术,2020,48(11):106-112.

    BAI Jianping, HAO Chunsheng, YANG Changyong, et al. Distribution in 3D of mining induced fracture zone in the overburden strata in fully-mechanized mining face[J]. Coal science and Technology, 2020, 48(11): 106-112.

    [17] 王创业,王敬,刘赟.浅埋煤层覆岩裂隙分形特征实验研究[J].中国矿业,2020,29(S1):486-489.

    WANG Chuangye, WANG Jing, LIU Yun. Experimental study on fractal characteristics of overburden fractures in shallow coal[J]. China Mining Magazine, 2020, 29(S1): 486-489.

    [18] 黄健丰,吴璋,王玉涛,等.水库下伏采空区覆岩裂隙探查与综合防治技术[J].煤矿安全,2020,51(2):90-96.

    HUANG Jianfeng, WU Zhang, WANG Yutao, et al. Exploration and comprehensive treatment technology of overburden fracture in underlying goaf of reservoir[J]. Safety in Coal Mines, 2020, 51(2): 90-96.

    [19] 陈辉,曹其嘉,韦钊,等.厚松散层薄基岩浅埋煤层导水断裂带高度研究[J].煤矿安全,2020,51(1):38.

    CHEN Hui, CAO Qijia, WEI Zhao, et al. Study on water-conducting fracture height of shallow buried coal seam with thick loose bed and thin base rock[J]. Safety in Coal Mines, 2020, 51(1): 38.

    [20] 曹健,黄庆享.浅埋近距煤层开采覆岩与地表裂缝发育规律及控制[J].煤田地质与勘探,2021,49(4):213-220.

    CAO Jian, HUANG Qingxiang. Regularity and control of overburden and surface fractures in shallow-contiguous seams[J]. Coal Geology & Exploration, 2021, 49(4): 213-220.

    [21] HUANG Qingxiang, CAO Jian. Research on coal pillar malposition distance based on coupling control of three-field in shallow buried closely spaced multi-seam mining, China[J]. Energies, 2019 ,12(3): 462.
    [22] 李贺,尹光志,许江,等.岩石断裂力学[M].重庆:重庆大学出版社,1988:26-28.
  • 期刊类型引用(1)

    1. 蒲志强,崔广永. 综放工作面过单面见方冲击危险性多参量监测预警分析. 煤矿安全. 2021(10): 183-189 . 本站查看

    其他类型引用(1)

计量
  • 文章访问数:  48
  • HTML全文浏览量:  1
  • PDF下载量:  80
  • 被引次数: 2
出版历程
  • 发布日期:  2021-12-19

目录

    /

    返回文章
    返回