• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

淹没射流破碎含瓦斯煤效率主控因素敏感性分析

马雄伟, 王兆丰, 杨腾龙, 陈金生, 李艳飞, 席杰

马雄伟, 王兆丰, 杨腾龙, 陈金生, 李艳飞, 席杰. 淹没射流破碎含瓦斯煤效率主控因素敏感性分析[J]. 煤矿安全, 2021, 52(11): 147-153.
引用本文: 马雄伟, 王兆丰, 杨腾龙, 陈金生, 李艳飞, 席杰. 淹没射流破碎含瓦斯煤效率主控因素敏感性分析[J]. 煤矿安全, 2021, 52(11): 147-153.
MA Xiongwei, WANG Zhaofeng, YANG Tenglong, CHEN Jinsheng, LI Yanfei, XI Jie. Sensitivity analysis of main control factors for efficiency of submerged jet crushing coal containing gas[J]. Safety in Coal Mines, 2021, 52(11): 147-153.
Citation: MA Xiongwei, WANG Zhaofeng, YANG Tenglong, CHEN Jinsheng, LI Yanfei, XI Jie. Sensitivity analysis of main control factors for efficiency of submerged jet crushing coal containing gas[J]. Safety in Coal Mines, 2021, 52(11): 147-153.

淹没射流破碎含瓦斯煤效率主控因素敏感性分析

Sensitivity analysis of main control factors for efficiency of submerged jet crushing coal containing gas

  • 摘要: 为了研究淹没射流条件下破碎含瓦斯煤效率的影响因素,展开了不同水射流冲击条件对破煤效率的影响研究,建立了水射流破碎含瓦斯煤流固耦合模型,以破煤深度、破煤体积为指标,考察了射流倾角、射流速度、喷嘴直径、初始靶距对破煤效率的影响。结果表明:淹没射流条件下,射流破煤过程初始阶段形成子弹状的破碎坑体,随着破煤的进行,破碎坑体直径增大,深度向下延伸;淹没射流条件下,破煤深度及破煤体积与射流速度、喷嘴直径变化成正相关,与初始靶距变化成负相关,煤体破碎坑体深度在射流与煤体相互垂直时达到最大值,破煤体积随射流倾角增加呈现先上升后下降再上升的趋势,在90°达到最大值;基于正交试验,得到不同射流参数对淹没射流破煤效率影响程度的主次顺序依次为: 射流倾角、射流速度、喷嘴直径、初始靶距。
    Abstract: In order to study the influencing factors of crushing efficiency of coal containing gas under submerged jet, the influence of different water jet impact conditions on coal crushing efficiency was studied, and the fluid solid coupling model of water jet crushing coal containing gas was established. Taking coal crushing depth and coal crushing volume as indexes, the effects of jet angle, jet velocity, nozzle diameter and initial target distance on coal crushing efficiency were investigated. The results show that: under the condition of submerged jet, bullet shaped crushing pit is formed in the initial stage of jet coal breaking process. With the process of coal breaking, the diameter of crushing pit increases and the depth extends downward; under the condition of submerged jet, the depth and volume of coal breaking are positively correlated with the change of jet velocity and nozzle diameter, and negatively correlated with the change of initial target distance, the depth of broken coal pit reaches the maximum value when the jet is perpendicular to the coal, and the broken coal volume increases first, then decreases and then rises with the increase of jet angle, reaching the maximum value at 90°; based on the orthogonal experiment, the primary and secondary order of theinfluence of different jet parameters on the coal breaking efficiency of submerged jet is as follows: jet inclination angle, jet velocity, nozzle diameter and initial target distance.
  • [1] 王恩元,汪皓,刘晓斐,等.水力冲孔孔洞周围煤体地应力和瓦斯时空演化规律[J].煤炭科学技术,2020, 48(1):39-45.

    WANG Enyuan, WANG Hao, LIU Xiaofei, et al. Spatio temporal evolution of geostress and gas field around hydraulic punching borehole in coal seam[J]. Coal Science and Technology, 2020, 48(1): 39-45.

    [2] 曹建军.超高压水力割缝卸压抽采区域防突技术应用研究[J].煤炭科学技术,2020,48(6):88-94.

    CAO Jianjun. Application research on regional outburst prevention technology of ultra-high pressure hydraulic slot pressure in relief drainage area[J]. Coal Science and Technology, 2020, 48(6): 88-94.

    [3] 贾进章,葛佳琪,甄纹浩,等.水力压裂增透技术及应用研究[J].中国安全科学学报,2020,30(10):63-68.

    JIA Jinzhang, GE Jiaqi, ZHEN Wenhao, et al. Research and application of anti-reflection technology of hydraulic fracturing[J]. China Safety Science Journal, 2020, 30(10): 63-68.

    [4] 刘萍,黄扬烛.水射流技术的现状及发展前景[J].煤矿机械,2009,30(9):10-12.

    LIU Ping, HUANG Yangzhu. Application and development of water jet technology[J]. Coal Mine Machinery, 2009, 30(9): 10-12.

    [5] 向文英,李晓红,卢义玉,等.淹没磨料射流的岩石冲蚀实验研究[J].中国矿业大学学报,2009,38(2):240-243.

    XIANG Wenying, LI Xiaohong, LU Yiyu, et al. Experimental study of rock erosion with submerged abrasive water jets[J]. Journal of China University of Mining & Technology, 2009, 38(2): 240-243.

    [6] 侯亚康,毛桂庭,阳宁.淹没磨料水射流对花岗岩的冲蚀研究[J].矿冶工程,2011,31(3):18.

    HOU Yakang, MAO Guiting, YANG Ning. Study of granite erosion due to submerged abrasive water jet[J]. Mining and Metallurgical Engineering, 2011, 31(3): 18.

    [7] 黄小波,卢义玉,夏彬伟,等.淹没射流旋转割缝技术在突出煤层掘进中的应用[J].煤炭科学技术,2012, 40(3):70-73.

    HUANG Xiaobo, LU Yiyu, XIA Binwei, et al. Application of flooded water jet rotary slotting technology to gateway driving in outburst seam[J]. Coal Science and Technology, 2012, 40(3): 70- 73.

    [8] 刘佳亮,司鹄,张宏.淹没状态下高压水射流破岩效率分析[J].中国安全科学学报,2012,22(11):23-29.

    LIU Jialiang, SI Hu, ZHANG Hong. Study on breaking rock efficiency of submerged water jet[J]. China Safety Science Journal, 2012, 22(11): 23-29.

    [9] 廖华林,李根生.淹没条件下超高压水射流冲蚀切割破岩实验研究[J].天然气工业,2006,26(5):61.

    LIAO Hualin, LI Gensheng. Experiment on rock breakdown by super-high-pressure water jet in submerged environment[J]. Natural Gas Industry, 2006, 26(5): 61.

    [10] 王宗龙,胡寿根,姚文龙.淹没条件下超高压磨料水射流切割岩石的实验研究[J].水动力学研究与进展,2009,24 (2):150-155.

    WANG Zonglong, HU Shougen, YAO Wenlong. Experimental research of ultra-high pressure abrasive water jet cutting rock in submerged environment[J]. Chinese Journal of Hydrodynamic, 2009, 24(2): 150-155.

    [11] 杨腾龙,王兆丰,陈金生,等.淹没条件对连续射流破碎含瓦斯煤效率影响研究[J].中国安全生产科学技术,2019,15(1):100-106.

    YANG Tenglong, WANG Zhaofeng, CHEN Jinsheng, et al. Study on influence of submerged conditions on efficiency of breaking coal containing gas by continuous jet[J]. Journal of Safety Science and Technology, 2019, 15(1): 100-106.

    [12] 蒋斌,王艾伦,王计划.基于ALE方法淹没条件下水射流破土数值模拟与试验[J].中国农机化学报,2020,41(8):196-203.

    JIANG Bin, WANG Ailun, WANG Jihua. Numerical simulation and experiment of beaking soil by jet under submerged condition based on ALE method[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(8): 196-203.

    [13] 陈欣欣,王川,施卫东,等.不同冲击角度下淹没冲击水射流的数值计算[J].排灌机械工程学报,2020,38(7):658.

    CHEN Xinxin, WANG Chuan, SHI Weidong, et al. Numerical simulation of submerged impinging water jet at different impact angles[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(7): 658.

    [14] 李世杰,王艾伦,刘向军,等.基于SPH算法土壤水射流冲击演化数值仿真研究[J].计算机仿真,2019, 36(3):243-247.

    LI Shijie, WANG Ailun, LIU Xiangjun, et al. Numerical simulation of soil water jet impact evolution based on SPH algorithm[J]. Computer Simulation, 2019, 36(3): 243-247.

    [15] 司鹄,王丹丹,李晓红.高压水射流破岩应力波效应的数值模拟[J].重庆大学学报,2008,31(8):942.

    SI Hu, WANG Dandan, LI Xiaohong. Stress wave effect in numerical simulation on rock breaking under high-pressure water jet[J]. Journal of Chongqing University, 2008, 31(8): 942-945.

    [16] 吴昊,夏俊芳,张国忠,等.基于EDEM-Fluent仿真的自旋射流式挖藕机的设计与试验[J].农业工程学报,2018,34(5):9-14.

    WU Hao, XIA Junfang, ZHANG Guozhong, et al. Design and experiment of spin-jet flow type lotus root digging machine based on EDEM-Fluent[J]. Transactions of the Chinese Society Agricultural Engineering, 2018, 34(5): 9-14.

    [17] 薛胜雄.高压水射流技术与应用[M].北京:机械工业出版社,1998.
计量
  • 文章访问数:  37
  • HTML全文浏览量:  0
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 发布日期:  2021-11-19

目录

    /

    返回文章
    返回