贵州土城矿区煤储层孔隙特征及影响因素
Pore characteristics and influencing factors of coal reservoir in Tucheng Mining Area of Guizhou Province
-
摘要: 利用压汞试验、扫描电镜等方法研究了土城矿区7个主要煤层孔隙发育特征。扫描电镜观察出煤孔隙类型包括原生孔、气孔、溶蚀孔、铸模孔、粒间孔、微裂隙等;原生孔和气孔呈带、群分布,孔隙间大多孔连通性差。压汞试验表明:3#煤层压汞孔容大、中孔占比较多,其余煤层孔容以小微孔为主,比表面积微孔占优势;3#煤层压汞曲线为Ⅰ型和Ⅱ型,9#、12#、15#、17#煤压汞曲线为Ⅱ型,孔隙以开放孔为主,连通性较好;291#、292#煤压汞曲线为Ⅲ型,孔隙主要为半封闭孔,连通性差;煤储层孔隙度、孔容、比表面积随镜质体反射率的增大呈负相关,与镜质体组分呈正相关,与无机组分呈负相关,与水分含量、灰分含量呈较弱的负相关。对比分析认为矿区3#煤层具有煤层气开发的优先孔隙条件。Abstract: The pore development characteristics of 7 main coal seams in Tucheng Mining Area were studied by mercury injection test and scanning electron microscope. Scanning electron microscope (SEM) observation shows that there are primary pores, pores, dissolution pores, mold holes, intergranular pores, micro cracks, etc. The primary pores and pores are distributed in belts and groups, and the connectivity of large pores between pores is poor; mercury injection test shows that the mercury injection pore volume of 3# coal seam is large and the proportion of medium pores is relatively large, and the pore volume of other coal seams is mainly small micropores, and the specific surface area of micropores is dominant; mercury injection curves of 3# coal seam are type I and type II, the mercury injection curves of 9#, 12#, 15# and 17# coal are type II, and the pores are mainly open pores with good connectivity; 291#, 292# coal mercury injection curves are type III, and the pores are mainly semi-closed pores with poor connectivity. The porosity, pore volume and specific surface area of coal reservoir are negatively correlated with the increase of vitrinite reflectivity, positively correlated with vitrinite components, negatively correlated with inorganic components, and weakly negatively correlated with water content and ash content. Through comparative analysis, it is considered that the 3# coal seam in the mining area has preferential pore conditions for CBM development.
-
-
[1] 范俊佳,琚宜文,柳少波,等.不同煤储层条件下煤岩微孔结构及其对煤层气开发的启示[J].煤炭学报,2013,38(3):441-447. FAN Junjia, JU Yiwen, LIU Shaobo, et al. Micropore structure of coal under different reservoir conditions and its implication for coalbed methane development[J]. Joural of China Coal Society, 2013, 38(3): 441-447.
[2] 李惠,王福国,李振,等.六盘水煤田杨梅树向斜主要煤层孔隙结构特征研究[J].煤炭科学技术,2019,47(7):234-243. LI Hui, WANG Fuguo, LI Zhen, et al. Study on pore properties of main coal seams of Yangmeishu syncline in Liupanshui Coalfield[J]. Coal Science and Technology, 2019, 47(7): 234-243.
[3] 党广兴,吴财芳,赵凯,等.贵州珠藏向斜无烟煤孔隙结构特征及其对吸附性的影响[J].煤田地质与勘探,2017,45(6):72-78. DANG Guangxing, WU Caifang, ZHAO Kai, et al. Pore property and its impact on the coalbed methane adsorption of anthracite from the Zhu-Zang syncline, Guizhou Province[J]. Coal Geology & Exploration, 2017, 45(6): 72-78.
[4] 赵兴龙,汤达祯,许浩,等.煤变质对煤储层孔隙系统发育的影响[J].煤炭学报,2010,35(9):1507-1511. ZHAO Xinglong, TANG Dazhen, XU Hao, et al. Effect of coal metamorphic process on pore system of coal reservoirs[J]. Journal of China Coal Society, 2010, 35(9): 1507-1511.
[5] 蔡佳丽,汤达祯,许浩,等.黔西上二叠统煤的孔隙特征及其控制因素[J].煤田地质与勘探,2011,39(5):6-10. CAI Jiali, TANG Dazhen, XU Hao, et al. Pore characteristics and controlling factors of upper permian coal in western Guizhou[J]. Coal Geology & Exploration, 2011, 39(5): 6-10.
[6] BB霍多特.煤与瓦斯突出[M].宋世钊,王佑安,译.北京:中国工业出版社,1996. [7] 刘金霖,李怀滨,张雪冰,等.鸡西盆地煤储层孔隙特征及主控因素[J].石油实验地质,2018,40(5):691. LIU Jinlin, LI Huaibin, ZHANG Xuebing, et al. Pore characteristics and controlling factors of coal reservoirs from Jixi Basin[J]. Petrloeum Geology & Experiment,
[8] 张慧.煤孔隙的成因类型及其研究[J].煤炭学报,2001,26(1):40-44. ZHANG Hui. Genetic types of coal pores and their research[J]. Joural of China Coal Society, 2001, 26(1): 40-44.
[9] 高为,金军,易同生,等.黔西月亮田矿区YV-1井煤储层孔隙特征研究[J].煤炭工程,2016,48(9):109. GAO Wei, JIN Jun, YI Tongsheng, et al. Research on pore characteristics of coal reservoirs in YV-1 well of Yueliangtian Mining Area in Western Guizhou[J]. Coal Engineering, 2016, 48(9): 109.
[10] 唐书恒,蔡超,朱宝存,等.煤变质程度对煤储层物性的控制作用[J].天然气工业, 2008,28(12):30-33. TANG Shuheng, CAI Chao, ZHU Baocun, et al. Control effect of coal metamorphic degree on physical properties of coal reservoirs[J]. Natural Gas Industry, 2008, 28(12): 30-33.
[11] 潘结南,张召召,李猛,等.煤的多尺度孔隙结构特征及其对渗透率的影响[J].天然气工业,2019,39(1):64-73. PAN Jienan, ZHANG Zhaozhao, LI Meng, et al. Characteristics of multi-scale pore structure of coal and its influence on permeability[J]. Natural Gas Industry, 2019, 39(1): 64-73.
-
期刊类型引用(6)
1. 李蒙,李爱国,钱冠雨,丁晓琦. 煤矿煤层脉动注水降尘技术研究. 煤. 2025(03): 39-42+54 . 百度学术
2. 武艳玲,葛栋锋. 基于高压压汞进-退曲线的煤层气储层孔裂隙结构非均质性精细化描述. 中国煤炭地质. 2024(10): 28-38 . 百度学术
3. 张村,贾胜,王永乐,赵毅鑫,陈彦宏,王方田. 煤样CT扫描重构研究进展:原理、方法及应用. 煤炭学报. 2024(S2): 800-820 . 百度学术
4. 方刚. 榆横北区巴拉素井田富水煤层微观特征研究. 煤矿安全. 2023(12): 191-198 . 本站查看
5. 徐慧刚,秦兴林. 西山煤田焦煤孔隙结构对瓦斯解吸的影响研究. 煤矿安全. 2022(05): 7-12 . 本站查看
6. 贾雪梅,蔺亚兵,陈龙,张辉. 基于压汞法的宏观煤岩组分孔隙结构差异性研究. 煤矿安全. 2022(06): 19-25 . 本站查看
其他类型引用(1)
计量
- 文章访问数: 72
- HTML全文浏览量: 0
- PDF下载量: 39
- 被引次数: 7