• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

西山煤田焦煤孔隙结构对瓦斯解吸的影响研究

徐慧刚, 秦兴林

徐慧刚, 秦兴林. 西山煤田焦煤孔隙结构对瓦斯解吸的影响研究[J]. 煤矿安全, 2022, 53(5): 7-12.
引用本文: 徐慧刚, 秦兴林. 西山煤田焦煤孔隙结构对瓦斯解吸的影响研究[J]. 煤矿安全, 2022, 53(5): 7-12.
XU Huigang, QIN Xinglin. Study on the influence of coking coal pore structure on methane desorption in Xishan Coalfield[J]. Safety in Coal Mines, 2022, 53(5): 7-12.
Citation: XU Huigang, QIN Xinglin. Study on the influence of coking coal pore structure on methane desorption in Xishan Coalfield[J]. Safety in Coal Mines, 2022, 53(5): 7-12.

西山煤田焦煤孔隙结构对瓦斯解吸的影响研究

Study on the influence of coking coal pore structure on methane desorption in Xishan Coalfield

  • 摘要: 为了研究西山煤田焦煤的微观孔隙特征及其对瓦斯解吸的影响规律,采用低温液氮吸附法,针对6个典型焦煤煤样的孔隙结构进行测试,将实验结果与焦煤瓦斯解吸特性相结合,从微观角度分析了孔隙结构对焦煤瓦斯解吸的影响。研究结果表明:焦煤孔隙体积、孔比表面积变化较大,分别在0.017 4~0.081 3 cm3/g、0.84~2.59 m2/g范围内变动;在焦煤的各类孔隙中,微孔最为发育,主要占据了孔隙表面积,而微孔体积很小,孔隙体积主要由大孔和中孔贡献;孔隙体积是影响焦煤瓦斯解吸的主要因素,但同时孔表面积的增加对解吸量也有积极贡献;焦煤水分含量对瓦斯解吸有重要影响,水分易堵塞煤体孔裂隙通道,抑制焦煤瓦斯解吸,进而降低总解吸量。
    Abstract: In order to investigate the pore characteristic of coking coal in Xishan Coalfield and its influence on methane desorption, cryogenic liquid nitrogen adsorption method was used to analyze the pore structures of six typical coking coal samples. Combining the experimental results with methane desorption, the effect of pore structures on methane desorption characteristics of coking coal was analyzed from the micro level. The results show that both pore volume and pore specific surface area of coking coals are changed in the wide range of 0.017 4-0.081 3 cm3/g and 0.84-2.59 m2/g, respectively. Micropores are most developed among all the pore types in coking coal, and they mainly occupy the pore surface area. However, micropore volume is small, and pore volume is mainly contributed by macropores and mesopores. Pore volume is the main influencing factor of coking coal desorption, simultaneously the increase of pore surface area also contributes to gas desorption. Moisture content in coking coal has great impact on gas desorption. It is easy for water molecules to block the pore-fracture channels, further to inhibit gas desorption, leading to the reduction of total desorption volume.
  • [1] 安丰华,贾宏福,刘军.基于煤孔隙构成的瓦斯扩散模型研究[J].岩石力学与工程学报,2021,40(5):987.

    AN Fenghua, JIA Hongfu, LIU Jun. A gas diffusion model based on the pore structure in coal[J]. Chinese Journal of Rock Mechanism and Engineering, 2021, 40(5): 987-996.

    [2] 赵政,倪小明,韩文龙,等.不同破坏程度煤的孔隙特征差异对比研究[J].煤矿安全,2021,52(7):9-14.

    ZHAO Zheng, NI Xiaoming, HAN Wenlong, et al. A comparative study on difference of pore characteristics of coal with different deformation degrees[J]. Safety in Coal Mines, 2021, 52(7): 9-14.

    [3] 唐代学,刘文,娄毅,等.贵州土城矿区煤储层孔隙特征及影响因素[J].煤矿安全,2021,52(7):21-26.

    TANG Daixue, LIU Wen, LOU Yi, et al. Pore characteristics and influencing factors of coal reservoir in Tucheng Mining Area of Guizhou Province[J]. Safety in Coal Mines, 2021, 52(7): 21-26.

    [4] 柳先锋,宋大钊,何学秋,等.微结构对软硬煤瓦斯吸附特性的影响[J].中国矿业大学学报,2018,47(1):155-161.

    LIU Xianfeng, SONG Dazhao, HE Xueqiu, et al. Effect of microstructures on methane adsorption characteristics of soft and hard coal[J]. Journal of China University of Mining & Technology, 2018, 47(1): 155-161.

    [5] Krooss BM, Bergen FV, Gensterblum Y, et al. High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals[J]. International Journal of coal Geology, 2002, 51(2): 69-92.
    [6] 聂百胜,柳先锋,郭建华,等.水分对煤体瓦斯解吸扩散的影响[J].中国矿业大学学报,2015,44(5):781.

    NIE Baisheng, LIU Xianfeng, GUO Jianhua, et al. Effect of moisture on gas desorption and diffusion in coal mass[J]. Journal of China University of Mining & Technology, 2015, 44(5): 781.

    [7] 周世宁.瓦斯在煤层中流动的机理[J].煤炭学报,1990,15(1):15-24.

    ZHOU Shining. Mechanism of gas flow in coal seams[J]. Journal of China Coal Society, 1990, 15(1): 15-24.

    [8] 韩军,张宏伟,霍丙杰.向斜构造煤与瓦斯突出机理探讨[J].煤炭学报,2008,33(8):908-913.

    HAN Jun, ZHANG Hongwei, HUO Bingjie. Discussion of coal and gas outburst mechanism of syncline[J]. Journal of China Coal Society, 2008, 33(8): 908-913.

    [9] Sakurovs R, Day S, Weir S. Relationships between the critical properties of gases and their high pressure sorption behavior on coals[J]. Energy Fuels, 2010, 24: 1781-1787.
    [10] 王振洋.构造煤微观结构演化及对瓦斯吸附解吸动力学特性的影响[D].徐州:中国矿业大学,2020.
    [11] 赵东,赵阳升,冯增朝.结合孔隙结构分析注水对煤体瓦斯解吸的影响[J].岩石力学与工程学报,2011, 30(4):686-692.

    ZHAO Dong, ZHAO Yangsheng, FENG Zengchao. Analysis of effect of water injection on methane desorption in coal combining pore structure[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(4): 686-692.

    [12] 蔡银英,程建圣,程波.基于时变扩散系数的圆柱体煤屑的瓦斯放散规律研究[J].矿业安全与环保,2020,47(3):32-36.

    CAI Yinying, CHENG Jiansheng, CHENG Bo. Study on the gas emission law of circular cinder based on time-varying diffusion coefficient[J]. Mining Safety & Environmental Protection, 2020, 47(3): 32-36.

    [13] 郝富昌,抄隆霄,孙丽娟,等.软硬煤瓦斯解吸规律及影响因素的实验研究[J].中国安全生产科学技术,2017,13(3):42-46.

    HAO Fuchang, CHAO Longxiao, SUN Lijuan, et al. Experimental study on gas desorption laws and influence factors of soft and hard coal[J]. Journal of Safety Science and Technology, 2017, 13(3): 42-46.

    [14] 齐黎明,赵嵘,梁为,等.不同流场条件下的煤样瓦斯解吸规律实验研究[J].矿业安全与环保,2016,43(2):5-7.

    QI Liming, ZHAO Rong, LIANG Wei, et al. Experimental study on gas desorption law of coal samples in different fluids fields[J]. Mining Safety & Environmental Protection, 2016, 43(2): 5-7.

    [15] 赵洪宝,李金雨,王涛,等.含不透气夹矸煤层瓦斯放散特征与模型研究[J].中国矿业大学学报,2020,49(5):826-834.

    ZHAO Hongbao, LI Jinyu, WANG Tao, et al. Research on gas release characteristics model of coal seam containing non-breathable layer[J]. Journal of China University of Mining & Technology, 2020, 49(5): 826-834.

    [16] 刘高峰,张子戌,张小东,等.气肥煤与焦煤的孔隙分布规律及其吸附-解吸特征[J].岩石力学与工程学报,2009,28(8):1588-1592.

    LIU Gaofeng, ZHANG Zirong, ZHANG Xiaodong, et al. Pore distribution regularity and adsorption-desorption characteristics of gas coal and coking coal[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(8): 1588-1592.

  • 期刊类型引用(7)

    1. 崔忠麒,徐娅煊,苏皓. 基于Stacking-SHAP的煤自燃倾向性影响因素研究. 煤炭技术. 2025(01): 150-155 . 百度学术
    2. 孙吉平. 基于SF_6质量浓度变化特征的煤矿火灾状态识别分析. 山西煤炭. 2025(01): 42-49 . 百度学术
    3. 曹富荣,吴学松,李军,付天予,刘佳伟,李志辉,杨小彬. 基于机器学习的多气体指标煤自燃温度预测. 煤矿安全. 2024(04): 106-113 . 本站查看
    4. 樊永勇,王新瑞,张春雷. 急倾斜特厚煤层分段采空区低温氮气防灭火技术研究与实践. 能源与环保. 2024(11): 254-262 . 百度学术
    5. 武泽伟,汪伟,祁云,梁然. 采空区遗煤自燃影响因素分析及风险评价. 山西大同大学学报(自然科学版). 2023(04): 116-122 . 百度学术
    6. 孔彪,朱思想,胡相明,杨涛,赵旭帅,斐达特,万姝含. 基于改进鲸鱼算法优化BP神经网络的煤自燃预测研究. 矿业安全与环保. 2023(05): 30-36 . 百度学术
    7. 陈鹏燕,周春山,程熙宇,田雅琪. 全物理交联Al~(3+)-CMC/MMT-PAM双网络凝胶的制备及性能. 矿业研究与开发. 2023(11): 143-149 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  79
  • HTML全文浏览量:  0
  • PDF下载量:  59
  • 被引次数: 9
出版历程
  • 发布日期:  2022-05-19

目录

    /

    返回文章
    返回