微波处理后饱水煤岩冲击破坏的试验研究
Experiment study on water-saturated coals after microwave treatment under impact loading
-
摘要: 利用分离式霍普金森压杆装置(SHPB)结合高速摄影设备研究了微波加热0、50、125、200 s后饱水煤样力学参数上的变化、动态加载过程中裂纹的发展以及冲击破碎后的块度特征。研究表明:微波加热对饱水煤岩的作用具有时间效应;加热125 s后煤样的峰值应力和峰值应变下降幅度较大,并且破碎后的块度更加均匀和细碎;此外,微波加热的时间越长,煤岩就越早发生破碎;出现上述现象的原因是煤岩中的水分在微波的作用下快速汽化,随着加热的进行煤样内部的蒸汽压力不断上升并在加热125 s后达到最大,造成煤岩内部孔隙和微裂隙的发育和扩张,从而导致煤样动态力学性能的劣化。Abstract: The water-saturated coal samples were heated by microwave for 0 s, 50 s, 125 s and 200 s, respectively. After that, a test system consisting of SHPB and high-speed photography apparatus was adopted to study the variation of mechanical parameters, the development of cracks during dynamic loading and the characteristics of breaking lumpiness. The research results showed that, microwave heating had time effect on the damage of water-saturated coal rock. After heating for 125 s, the peak stress and peak strain of coal sample decreased greatly, and the lumpiness after breaking was more uniform and finely. In addition, the longer the microwave heating period, the earlier the coal rock will break up. The reason for the above phenomenon is that the moisture in the coal rock vaporizes rapidly stimulated by microwaves. With the process of heating, the steam pressure inside the coal sample rises continuously and reaches its maximum after heating for 125 s, resulting in the development and expansion of pores and micro-cracks inside the coal rock, thus leading to the deterioration of the mechanical properties of the coal sample.
-
Keywords:
- water-saturated coal /
- impact loading /
- microwave heating /
- SHPB /
- high-speed photography /
- time effect /
- mechanical property
-
-
[1] 袁亮.我国深部煤与瓦斯共采战略思考[J].煤炭学报,2016,41(1):1-6. YUAN Liang. Strategic thinking of simultaneous exploitation of coal and gas in deep mining[J]. Journal of China Coal Society, 2016, 41(1): 1-6.
[2] 杨新乐.低渗透煤层煤层气注热增产机理的研究[D].阜新:辽宁工程技术大学,2009. [3] 管伟明.微波加热煤储层的共轭传热模型[J].辽宁工程技术大学学报(自然科学版),2014,33(11):1447. GUAN Weimin. Numerical simulation for conjugate heat transfer in microwave heated coal reservoir[J]. Journal of Liaoning Technical University(Natural Science), 2014, 33(11): 1447.
[4] 李贺,林柏泉,洪溢都,等.微波辐射下煤体孔裂隙结构演化特性[J].中国矿业大学学报,2017,46(6):1194-1201. LI He, LIN Baiquan, HONG Yidu, et al. Effect of microwave irradiation on pore and fracture evolutions of coal[J]. Journal of China University of Mining and Technology, 2017, 46(6):1194-1201.
[5] WANG Weidong, XIN Fanwen, TU Yanan, et al. Pore structure development in Xilingol lignite under microwave irradiation[J]. Journal of the Energy Institute, 2018, 91: 75-86. [6] HONG Yidu, LIN Baiquan, ZHU Chuanjie, et al. Effect of microwave irradiation on petrophysical characterization of coals[J]. Applied Thermal Engineering, 2016, 102:1109-1125. [7] LI He, LIN Baiquan, YANG Wei,et al. Experimental study on the petrophysical variation of different rank coals with microwave treatment[J]. International Journal of Coal Geology, 2016, 154/155: 82-91. [8] 张文清.冲击载荷下松软煤力学特性及对煤与瓦斯突出的影响[D].淮南:安徽理工大学,2015. [9] 单仁亮,程瑞强,徐慧玲,等.云驾岭煤矿无烟煤的动态本构特性试验研究[J].岩石力学与工程学报,2005(1):4658-4662. SHAN Renliang, CHENG Ruiqiang, XU Huiling, et al. Experimental study on dynamic constitutive characteristics of anthracite of Yunjialing coal mine[J]. Chinese Journal of Rock Mechanics and Engineering, 2005(1): 4658-4662.
[10] 刘少虹,李凤明,蓝航,等.动静加载下煤的破坏特性及机制的试验研究[J].岩石力学与工程学报,2013(S2):3749-3759. LIU Shaohong, LI Fengming, LAN Hang, et al. Experimental study of failure characteristics and mechanism of coal under coupled static and dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2013(S2): 3749-3759.
[11] BIENIAWSKI Z T, HAWKERS I. Suggested methods for determining tensile strength of rock materials[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15(3): 99-103. [12] ZHOU Y X, XIA K, Li X B, et al. Suggested methods for determining the dynamic strength parameters and mode-Ⅰ fracture toughness of rock materials[J]. International Journal of Rock Mechanics & Mining Sciences, 2012, 49: 105-112. [13] 周子龙,李夕兵,岩小明.岩石 SHPB 测试中试样恒应变率变形的加载条件[J].岩石力学与工程学报,2009,28(12):2445-2452. ZHOU Zilong, LI Xibing, YAN Xiaoming. Loading condition for specimen deformation at constant strain rate in SHPB test of rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(12):2445.
[14] 李夕兵.岩石动力学基础与应用[M].北京:科学出版社,2014. [15] Chen R, Xia K, Dai F, et al. Determination of dynamic fracture parameters using a semi-circular bend technique in split Hopkinson pressure bar testing[J]. Engineering Fracture Mechanics, 2009, 76(9): 1268. [16] WANG Ping, YIN Tubin, LI Xibing, et al. Dynamic properties of thermally treated granite subjected to cyclic impact loading[J]. Rock Mechanics and Rock Engineering, 2019, 52: 991-1010. [17] ITAYA Yoshinori, UCHIYAMA Shigeru, HATANO Shigenobu, et al. Drying enhancement of clay slab by microwave heating[J]. Drying Technology, 2014, 23(6): 1243-1255. [18] Benjamin Lepers, Aditya Putranto, Martin Umminger, et al. A drying and thermoelastic model for fast microwave heating of concrete[J]. Frontiers in Heat and Mass Transfer, 2014, 13(5):1-11. [19] 尹土兵,李夕兵,王斌,等.高温后砂岩动态压缩条件下力学特性研究[J].岩土工程学报,2011,33(5):777-784. YIN Tubing, LI Xibing, WANG Bin, et al. Mechanical properties of sandstones after high temperature under dynamic loading[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 777-784.
-
期刊类型引用(3)
1. 杨登峰,李小双,马天辉,谢生荣. 基于断裂力学的浅埋工作面过沟谷地形上坡段切顶机理分析. 矿业研究与开发. 2024(04): 97-106 . 百度学术
2. 范亚奇,张新国,常啸,孟子轩,焦方树. 不同深度黄土微观特性对开采沉陷的影响研究. 煤矿安全. 2024(04): 143-151 . 本站查看
3. 吴孟函,侯健,张彦勤,冯浩波. 基于CATS模型的黄土丘陵小流域优势水土保持植物配比. 草地学报. 2023(08): 2455-2461 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 26
- HTML全文浏览量: 1
- PDF下载量: 11
- 被引次数: 3