Study on the impact of microscopic characteristics of loess at different depths on mining subsidence
-
摘要:
为了探究厚黄土层下开采黄土微观特性对地表移动变形的影响,以山西某矿为例,采用物理实验与数值模拟相结合的方法,分析了不同深度黄土颗粒组成及微观结构特征,建立了厚黄土层分层模型,研究了不同黄土层厚度下的地表变形特征,揭示了黄土微观结构变化对地表移动变形的影响。研究表明:随着黄土深度增加,粉粒含量不断减少,黏粒及胶粒含量升高,微观结构由似柱状堆砌到似球状镶嵌最后形成胶结凝块结构,孔隙空间由贯穿可压缩孔隙到镶嵌孔隙最后形成微孔隙空间;该矿150 m厚黄土层下开采,地表最大下沉及水平移动值分别为4.112、1.327,20 m黄土层移动变形低于地表黄土,黄土压缩量约占地表最大下沉值的12.4%且主要表现在地表浅层处;随着土岩比不断增大,地表下沉量及水平移动呈先增大后减小特征,两者分别于土岩比1.33、1.67达到转折点;黄土层随着深度的增加,其微观结构变化对于地表宏观沉陷具有缓冲作用。
Abstract:In order to investigate the impact of loess micro characteristics on surface movement and deformation during the mining of thick loess layers, a case study was conducted in a mine in Shanxi Province. A combined approach of physical experiment and numerical simulation was used to analyze the particle composition and microstructural characteristics of loess at different depth conditions. A layered model of thick loess layers was established to study the deformation characteristics of the surface under different loess layer thickness conditions. The research revealed the influence of variations in loess microstructure on surface movement and deformation. Research has shown that: with the increase of loess depth, the content of silt particles decreases continuously, while the content of clay and colloidal particles increases. The microstructure changes from a columnar-like arrangement to a spherical-like embedding, ultimately forming a cemented agglomerate structure. The pore space transitions from interconnected compressible pores to embedded pores, eventually forming micropore spaces; the mining of the 150-meter thick loess layer in the mine resulted in a maximum surface subsidence of 4.112 m and a maximum horizontal displacement of 1.327 m. The movement and deformation of the 20 m loess layer were lower than those of the surface loess. The compression of the loess accounted for approximately 12.4% of the maximum surface subsidence, mainly occurring in shallow layers of the surface; as the soil-rock ratio increases, the surface subsidence and horizontal displacement exhibit a first-increase-then-decrease trend. The turning points occur at soil-rock ratios of 1.33 and 1.67, respectively. The variation of loess microstructure with depth has a buffering effect on the macroscopic subsidence of the surface.
-
-
表 1 黄土理化性质参数
Table 1 Physicochemical parameters of loess
深度/
m含水率/
%密度/
(g·cm−3)干密度/
(g·cm−3)孔隙率/
%液限/
%塑限/
%饱和度/
%压缩
系数1 10.60 1.528 1.382 41.3 31.62 20.71 33.70 0.328 2 11.80 1.500 1.342 41.9 31.21 19.67 36.30 0.325 3 12.20 1.529 1.351 40.3 29.98 19.70 39.20 0.349 4 12.70 1.587 1.380 38.6 31.63 19.28 39.80 0.311 5 12.60 1.593 1.365 34.2 29.95 19.73 40.50 0.291 10 11.10 1.711 1.412 29.8 27.42 19.03 41.00 0.274 20 9.90 2.013 1.424 12.8 26.77 18.72 42.10 0.189 表 2 黄土粒度组成
Table 2 Grain size composition of loess
深度/m 粗粉粒/% 细粉粒/% 黏粒/% 胶粒/% 平均粒径/μm 1 13.22 49.75 13.01 5.53 3.95 2 12.03 46.32 13.19 4.88 4.13 3 9.47 43.89 13.45 5.64 3.12 4 13.13 47.81 18.59 7.13 2.57 5 9.77 43.31 16.21 6.94 2.67 10 11.72 48.79 14.89 6.75 2.73 20 6.80 58.21 20.04 7.78 2.13 表 3 数值模拟岩层物理及节理参数
Table 3 Numerical simulation of rock physics and joint parameters
岩层 岩层厚度/m 弹性模量/GPa 泊松比 内摩擦角/(°) 黏聚力/MPa 抗拉强度/MPa 密度/(t·m−3) 法向刚度/(GPa·m−1) 切向刚度/(GPa·m−1) 浅部黄土 20.0 0.015 0.15 15.00 0.115 0.013 1.300 1 1 深部黄土 130.0 1.000 0.20 24.00 0.650 0.300 1.630 2 1 细粒砂岩 32.0 9.000 0.26 35.50 3.000 1.900 2.250 6 6 泥岩 28.0 6.400 0.23 35.84 0.870 1.240 2.400 3 2 煤层 6.5 2.400 0.29 34.18 0.660 0.940 1.500 2 1 粉砂岩 33.5 5.000 0.23 38.00 1.200 2.120 2.300 7 7 表 4 不同厚度黄土层地表下沉与水平移动参数
Table 4 Different thickness loess layer surface subsidence movement deformation parameters
模拟
编号黄土层
厚度/m基岩
厚度/m黄土基
岩比下沉值/
m下沉
系数
q水平
移动/
m水平
移动
系数bTY-1 60 60 1.00 5.102 0.785 1.949 0.382 TY-2 80 60 1.33 5.221 0.803 2.068 0.396 TY-3 100 60 1.67 4.757 0.732 1.941 0.408 TY-4 120 60 2.00 4.471 0.688 1.659 0.371 TY-5 150 60 2.50 4.122 0.634 1.327 0.322 -
[1] 刘峰,曹文君,张建明,等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报,2021,46(1):1−15. LIU Feng, CAO Wenjun, ZHANG Jianming, et al. Current technological innovation and development direction of the 14th Five-Year Plan period in China coal industry[J]. Journal of China Coal Society, 2021, 46(1): 1−15.
[2] 中华人民共和国自然资源部. 中国矿产资源报告2022[J]. 自然资源情报,2023(1):2. [3] 余学义,李邦帮,李瑞斌,等. 西部巨厚湿陷性黄土层开采损害程度分析[J]. 中国矿业大学学报,2008,37(1):43−47. doi: 10.3321/j.issn:1000-1964.2008.01.009 YU Xueyi, LI Bangbang, LI Ruibin, et al. Analysis of mining damage in huge thick collapsible loess of western China[J]. Journal of China University of Mining & Technology, 2008, 37(1): 43−47. doi: 10.3321/j.issn:1000-1964.2008.01.009
[4] 芦家欣,汤伏全,赵军仪,等. 黄土矿区开采沉陷与地表损害研究述评[J]. 西安科技大学学报,2019,39(5):859−866. LU Jiaxin, TANG Fuquan, ZHAO Junyi, et al. Review of study on mining subsidence and ground surface damage in loess mining area[J]. Journal of Xi’an University of Science and Technology, 2019, 39(5): 859−866.
[5] 汤伏全. 西部厚黄土层矿区开采沉陷预计模型[J]. 煤炭学报,2011,36(S1):74−78. TANG Fuquan. Prediction model of mining subsidence in western thick loess mining area[J]. Journal of China Coal Society, 2011, 36(S1): 74−78.
[6] 顾伟,谭志祥,邓喀中. 基于双重介质力学耦合相关的沉陷模型研究[J]. 采矿与安全工程学报,2013,30(4):589−594. GU Wei, TAN Zhixiang, DENG Kazhong. Study on subsidence model based on double-medium mechanics coupling[J]. Journal of Mining & Safety Engineering, 2013, 30(4): 589−594.
[7] 宋世杰,王双明,赵晓光,等. 基于覆岩层状结构特征的开采沉陷分层传递预计方法[J]. 煤炭学报,2018,43(S1):87−95. SONG Shijie, WANG Shuangming, ZHAO Xiaoguang, et al. Stratification transfer method of the mining subsidence based on the characteristics of layered structure in coal overburden[J]. Journal of China Coal Society, 2018, 43(S1): 87−95.
[8] 刘义新,戴华阳,姜耀东. 厚松散层矿区采动岩土体移动规律模拟试验研究[J]. 采矿与安全工程学报,2012,29(5):700−706. LIU Yixin, DAI Huayang, JIANG Yaodong. Model test for mining induced movement law of rock and soil mass under thick unconsolidated layers[J]. Journal of Mining & Safety Engineering, 2012, 29(5): 700−706.
[9] 郭文兵,黄成飞,陈俊杰. 厚湿陷黄土层下综放开采动态地表移动特征[J]. 煤炭学报,2010,35(S1):38−43. GUO Wenbing, HUANG Chengfei, CHEN Junjie. Dynamic surface movement characteristics of fully mechanized caving mining under thick collapsible loess layer[J]. Journal of China Coal Society, 2010, 35(S1): 38−43.
[10] 穆驰,余学义,张冬冬,等. 黄土沟壑区采动滑坡变形规律分析[J]. 煤矿安全,2021,52(8):208−217. MU Chi, YU Xueyi, ZHANG Dongdong, et al. Analysis of deformation law of mining landslide in loess gully area[J]. Safety in Coal Mines, 2021, 52(8): 208−217.
[11] 秦喜文,杨秀宇,巨文涛. 黄土沟壑地貌下综放开采覆岩结构稳定性研究[J]. 煤矿安全,2021,52(12):66−72. QIN Xiwen, YANG Xiuyu, JU Wentao. Study on stability of overlying rock structure in fully mechanized top coal caving mining under loess gully landform[J]. Safety in Coal Mines, 2021, 52(12): 66−72.
[12] 赵兵朝,刘宾,王建文,等. 柠条塔煤矿叠置开采地表岩移参数分析[J]. 煤矿安全,2016,47(9):213−216. ZHAO Bingchao, LIU Bin, WANG Jianwen, et al. Analysis of surface rock movement parameters in Ningtiaota Coal Mine Superimposed Mining[J]. Safety in Coal Mines, 2016, 47(9): 213−216.
[13] 王双明,魏江波,宋世杰,等. 黄土沟谷区浅埋煤层开采覆岩破坏与地表损伤特征研究[J]. 煤炭科学技术,2022,50(5):1−9. WANG Shuangming, WEI Jiangbo, SONG Shijie, et al. Study on overburden and surface damage characteristics of shallow-buried coal seam mining in loess gully area[J]. Coal Science and Technology, 2022, 50(5): 1−9.
[14] 苗彦平,谢晓深,陈小绳,等. 浅埋煤层开采地表裂缝发育规律及机理研究[J]. 煤矿安全,2022,53(4):209−215. MIAO Yanping, XIE Xiaoshen, CHEN Xiaosheng, et al. Development law and mechanism of surface cracks caused by shallow coal seam mining[J]. Safety in Coal Mines, 2022, 53(4): 209−215.
[15] 徐祝贺,朱润生,何文瑞,等. 厚松散层浅埋煤层大工作面开采沉陷模型研究[J]. 采矿与安全工程学报,2020,37(2):264−271. XU Zhuhe, ZHU Runsheng, HE Wenrui, et al. Subsidence model of large working face in shallow buried coal seam with thick loose layer[J]. Journal of Mining & Safety Engineering, 2020, 37(2): 264−271.
[16] 汤伏全,董龙凯,王宗良,等. 基于沉陷对称特征的近水平煤层开采InSAR三维位移反演模型[J]. 煤炭学报,2019,44(1):210−220. TANG Fuquan, DONG Longkai, WANG Zongliang, et al. InSAR three-dimensional displacement inversion model of near-horizontal coal seam mining based on subsidence symmetry characteristics[J]. Journal of China Coal Society, 2019, 44(1): 210−220.
[17] 胡海峰,廉旭刚,蔡音飞,等. 山西黄土丘陵采煤沉陷区生态环境破坏与修复研究[J]. 煤炭科学技术,2020,48(4):70−79. HU Haifeng, LIAN Xugang, CAI Yinfei, et al. Study on ecological environment damage and restoration for coal mining-subsided area in loess hilly area of Shanxi Province[J]. Coal Science and Technology, 2020, 48(4): 70−79.
[18] 关军琪,吕义清,赵国贞. 黄土沟谷区采空区充填对地表变形规律的影响研究[J]. 煤矿安全,2022,53(1):49−55. GUAN Junqi, LYU Yiqing, ZHAO Guozhen. Study on the influence of goaf filling on surface deformation in loess gully area[J]. Safety in Coal Mines, 2022, 53(1): 49−55.
[19] 徐树媛,张永波,时红,等. 厚黄土覆盖区煤炭开采对松散含水层影响的相似模拟研究[J]. 矿业安全与环保,2019,46(3):1−5. XU Shuyuan, ZHANG Yongbo, SHI Hong, et al. Analogy simulation study on the influence of coal mining on unconsolidated aquifer in the area covered by thick loess[J]. Mining Safety & Environmental Protection, 2019, 46(3): 1−5.
[20] 崔靖俞,张吾渝,解邦龙,等. 西宁地区不同深度原状黄土湿陷性及微观机理研究[J]. 岩土工程学报,2019,41(S2):249−252. doi: 10.11779/CJGE2019S2062 CUI Jingyu, ZHANG Wuyu, XIE Banglong, et al. Collapsibility and microscopic mechanism of intact loess at different depths in Xining area[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 249−252. doi: 10.11779/CJGE2019S2062
[21] 方祥位,申春妮,李春海,等. 陕西蒲城黄土微观结构特征及定量分析[J]. 岩石力学与工程学报,2013,32(9):1917−1925. FANG Xiangwei, SHEN Chunni, LI Chunhai, et al. Quantitative analysis of microstructure characteristics of Pucheng loess in Shaanxi Province[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1917−1925.
[22] 刘辉,李玉,苏丽娟,等. 松基比对地表变形的影响及厚松散层薄基岩条件的分析与探讨[J]. 煤炭科学技术,2023,51(9):11−23. LIU Hui, LI Yu, SU Lijuan, et al. Analysis and discussion of the influence of loose foundation ratio on surface deformation and the condition of thick loose layer and thin bedrock[J]. Coal Science and Technology, 2023, 51(9): 11−23.
[23] 汪锋,陈绍杰,许家林,等. 基于松散层拱结构理论的岩层控制研究[J]. 煤炭科学技术,2020,48(9):130−138. WANG Feng, CHEN Shaojie, XU Jialin, et al. Research on ground control based on arch structure in unconsolidated layers theory[J]. Coal Science and Technology, 2020, 48(9): 130−138.
[24] 张文泉,刘海林,赵凯. 厚松散层薄基岩条带开采地表沉陷影响因素研究[J]. 采矿与安全工程学报,2016,33(6):1065−1071. ZHANG Wenquan, LIU Hailin, ZHAO Kai. Influential factors on surface subsidence in stripe mining under thick unconsolidated layers and thin bedrock[J]. Journal of Mining & Safety Engineering, 2016, 33(6): 1065−1071.