• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

基于图像识别的煤矿井下安全管控技术

张立亚

张立亚. 基于图像识别的煤矿井下安全管控技术[J]. 煤矿安全, 2021, 52(2): 165-168.
引用本文: 张立亚. 基于图像识别的煤矿井下安全管控技术[J]. 煤矿安全, 2021, 52(2): 165-168.
ZHANG Liya. Safety control technology of coal mine based on image recognition[J]. Safety in Coal Mines, 2021, 52(2): 165-168.
Citation: ZHANG Liya. Safety control technology of coal mine based on image recognition[J]. Safety in Coal Mines, 2021, 52(2): 165-168.

基于图像识别的煤矿井下安全管控技术

Safety control technology of coal mine based on image recognition

  • 摘要: 根据煤矿安全生产的需求,研究基于图像识别的煤矿井下重点区域安全管控技术,利用机器学习算法和计算机视觉技术,同时结合人员管理数据、设备运行数据进行数据的分析,经过联动分析,数据挖掘,可实现对井下人员行为、煤量的监测和管控,形成目标风险预控的知识库,并进行了井下的实验验证。实验数据表明:系统平台的实时分析响应时间小于2 s,识别率大于98%,系统可以有效的实现井下人员、煤量等动目标的安全管控。
    Abstract: According to the demands of coal mine safety production, the safety management and control technology of key area in coal mine based on image recognition is studied. Machine learning algorithm and computer vision technology are used to analyze the data combined with personnel management data and equipment operation data. Through linkage analysis and data mining, the monitoring and control of underground personnel behavior and coal quantity can be realized, and a knowledge base for target risk pre-control can be formed, which is also verified by underground experiments. The experimental data show that the real-time analysis response time of the system platform is less than 2 s, and the recognition rate is more than 98%. The system can effectively realize the safety control of moving targets such as underground personnel and coal quantity.
  • [1] 孙继平,靳春海,曹玉超.基于视频图像的矿井水灾识别及趋势预测方法研究[J].工矿自动化,2019,45(7):1-4.

    SUN Jiping, JIN Chunhai, CAO Yuchao. Research on mine flood identification and trend prediction method based on video image[J]. Industrial and Mine Automation, 2019, 45(7): 1-4.

    [2] 孙继平,田子建.矿井图像监视系统与关键技术[J].煤炭科学技术,2014,42(1):65-68.

    SUN Jiping, TIAN Zijian.Image monitoring system and key technology in underground mine[J]. Coal Science and Technology, 2014, 42(1): 65-68.

    [3] 孙继平.煤矿信息化自动化新技术与发展[J]. 煤炭科学技术,2016,44(1):19-23.

    SUN Jiping. New technology and development of mine informatization and automation[J]. Coal Science and Technology, 2016, 44(1): 19-23.

    [4] 王国法,赵国瑞,任怀伟.智慧煤矿与智能化开采关键核心技术分析[J].煤炭学报,2019,44(1):34-41.

    WANG Guofa, ZHAO Guorui, REN Huaiwei. Analysis on key technologies of intelligent coal mine and intelligent mining[J]. Journal of China Coal Society, 2019, 44(1): 34-41.

    [5] 张立亚.矿山智能视频分析与预警系统研究[J].工矿自动化,2017,43(11):16-20.

    ZHANG Liya. Research on intelligent video analysis and early warning system for mine[J]. Industrial and Mine Automation, 2017, 43(11): 16-20.

    [6] 陈月,赵岩,王世刚.基于SIFT特征矢量图的快速图像拼接方法[J].吉林大学学报(理学版),2017,55(1):116-122.

    CHEN Yue, ZHAO Yan, WANG Shigang.Fast image stitching method based on SIFT feature vector image[J]. Journal of Jilin University(Science Edition), 2017, 55(1): 116-122.

    [7] 孙继平,贾倪.矿井视频图像中人员目标匹配与跟踪方法[J].中国矿业大学学报,2015,44(3):540.

    SUN Jiping, JIA Ni. Human target matching and tracking method in coal mine video[J]. Journal of China University of Mining and Technology, 2015, 44(3): 540.

    [8] 张谢华,赵小虎.煤矿智能视频监控中的运动目标检测研究[J].工矿自动化,2016,42(4):31-36.

    ZHANG Xiehua, ZHAO Xiaohu. Research on moving target detection in coal mine intelligent video monitoring[J]. Industrial and Mine Automation, 2016, 42(4): 31-36.

    [9] 陈伟.基于可见光与成像通信技术的煤矿人员精确定位方法[J].煤矿安全,2019,50(12): 114-117.

    CHEN Wei. Research on personnel precise positioning method of coal mine based on visible light and imaging communication technology[J]. Safety in Coal Mines, 2019, 50(12): 114-117.

    [10] 张立亚.基于动目标特征提取的矿井目标监测[J].煤炭学报,2017,42(S2):603-610.

    ZHANG Liya. Mine target monitoring based on feature extraction of moving target[J]. Journal of China Coal Society, 2017, 42(S2): 603-610.

    [11] 杨小彬,周世禄,李娜,等.深度学习及其在煤矿安全领域的应用[J].煤矿安全,2019,50(1): 253-256.

    YANG Xiaobin, ZHOU Shilu, LI Na, et al. Deep learning and its application in coal mine safety[J]. Safety in Coal Mines, 2019, 50(1): 253-256.

    [12] 张立亚,孟庆勇,杨坤.基于维纳滤波的矿井监控图像的复原技术[J].煤矿安全,2019,50(1): 129.

    ZHANG Liya, MENG Qingyong, YANG Kun. Recovery technology of mine monitoring image based on wiener filtering[J]. Safety in Coal Mines, 2019, 50(1): 129.

    [13] 郑静,张起贵,付锋.嵌入式智能视频分析系统硬件仿真设计[J].煤矿机械,2012,33(4):261-262.

    ZHENG Jing, ZHANG Qigui, FU Feng. Design simulation of embedded intelligent video analysis system[J]. Coal Mine Machinery, 2012, 33(4): 261-262.

  • 期刊类型引用(14)

    1. 张铎,孙艺,赵得福,冶平,文虎,张首石. LN_2/CO_2复合制干冰对松散煤体降温特性. 西安科技大学学报. 2024(01): 23-33 . 百度学术
    2. 白洁琪,白纪成,梁运涛,王琳,宋双林,田富超. CF_3H和CO_2抑制CH_4爆炸实验研究. 煤矿安全. 2024(05): 122-130 . 本站查看
    3. 蔡春城,张喜龙,罗松涛,程根银. 孔庄煤矿7436工作面CO_2惰化技术参数优化. 华北科技学院学报. 2024(04): 43-48 . 百度学术
    4. 张俊杰,刘宇,蔡德芳,由洋. 大倾角工作面采空区均压-注氮联合防火数值模拟研究. 煤炭技术. 2024(09): 144-149 . 百度学术
    5. 石元来. 液态二氧化碳防火机理及远距离输送技术. 陕西煤炭. 2024(10): 44-49 . 百度学术
    6. 郑万成,王浩,邹祺,赵波. 惰性气体对煤低温氧化过程官能团变化影响研究. 能源与环保. 2024(12): 54-59+65 . 百度学术
    7. 王新航. 基于半无限大平板的干冰防火数值模拟. 能源与节能. 2023(03): 121-124 . 百度学术
    8. 郭明生,王文,程志斌. 自燃煤层切顶卸压沿空留巷防灭火技术研究. 煤炭技术. 2023(06): 117-122 . 百度学术
    9. 邓军,杨囡囡,王彩萍,陈功华,康付如,任立峰,崔小超,白光星. 采空区煤自燃“防-抑-灭”协同防灭火关键技术. 煤矿安全. 2022(09): 1-8 . 本站查看
    10. 王宇恒,史波波,赵鹏翔,翟小伟,白广余. 复合惰气在采空区遗煤中竞争吸附的分子动力学模拟研究. 中国安全生产科学技术. 2022(09): 82-88 . 百度学术
    11. 张毅. 亿欣煤业综采面切顶留巷采空区防灭火技术. 山东煤炭科技. 2021(09): 92-94+97 . 百度学术
    12. 荆蕊,王雪峰,乔玲,邓存宝,郝朝瑜,康延雷. 电厂烟气注入采空区防灭火技术的研究进展. 煤炭工程. 2021(11): 125-130 . 百度学术
    13. 付伟,胡浩,李继良,陆伟,张成涛,陈军,张鹏,孔彪,庄则栋. 杂质对矿井大高差液态CO_2管道输送的影响. 安全与环境工程. 2021(06): 78-83 . 百度学术
    14. 邓林峰. 高瓦斯不易自燃煤层综采面采空区高温隐患治理技术. 山西煤炭. 2021(04): 55-58 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  61
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 20
出版历程
  • 发布日期:  2021-02-19

目录

    /

    返回文章
    返回