• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

结构异性煤层注水裂纹扩展机制研究

冉星仕

冉星仕. 结构异性煤层注水裂纹扩展机制研究[J]. 煤矿安全, 2020, 51(8): 188-192.
引用本文: 冉星仕. 结构异性煤层注水裂纹扩展机制研究[J]. 煤矿安全, 2020, 51(8): 188-192.
RAN Xingshi. Crack Propagation Mechanism of Water Injection in Anisotropic Coal Seam[J]. Safety in Coal Mines, 2020, 51(8): 188-192.
Citation: RAN Xingshi. Crack Propagation Mechanism of Water Injection in Anisotropic Coal Seam[J]. Safety in Coal Mines, 2020, 51(8): 188-192.

结构异性煤层注水裂纹扩展机制研究

Crack Propagation Mechanism of Water Injection in Anisotropic Coal Seam

  • 摘要: 基于煤体结构异性特征,从微观角度数值分析注水煤体裂纹起裂、扩展及停止过程。研究结果表明:注水时煤体节理端应力集中,然后沿节理面(弱面)扩展,当剪应力小于煤面剪切强度时,裂纹停止;注水压力较大时,煤体不仅沿节理面扩展,而且还在裂纹尖端处导致煤体损伤,衍生新的裂纹路径。
    Abstract: In this paper, based on the structural anisotropy characteristics of coal body, crack development of crack initiation, propagation and stop by water injecting into coal body is numerically analyzed in microscopic model. The results show that the stress at the joint end of coal body is concentrated during water injection, and then propagates along the joint surface (weak surface). As the shear stress is less than the shear strength of coal surface, the crack stops. When the water injection pressure is higher, the coal body not only propagates along the joint surface, but also causes the coal body damage at the crack tip, which leads to a new crack path.
  • [1] Fan CJ, Li S, Luo MK, et al. Coal and gas outburst dynamic system[J]. International Journal of Mining Science and Technology, 2017, 27: 49-55.
    [2] Wold MB, Connell LD, Choi SK. The role of spatial variability in coal seam parameters on gas outburst behaviour during coal mining[J]. International Journal of Coal Geology, 2008, 75(1): 1-14.
    [3] 赵宝友,王海东.我国低透气性本煤层增透技术现状及气爆增透防突新技术[J].爆破,2014,31(3):32.
    [4] 陈娟,赵耀江.近十年来我国煤矿事故统计分析及启示[J].煤炭工程,2012(3):137-139.
    [5] 徐景德,杨鑫,赖芳芳,等.国内煤矿瓦斯强化抽采增透技术的现状及发展[J].矿业安全与环保,2014,41(4):100-103.
    [6] Yue Gaowei, Li Minmin, Wang lu, et al. Optimal layout of blasting holes in structural anisotropic coal seam[J]. Plos One, 2019,14(6): 1-14.
    [7] 翟成,李贤忠,李全贵.煤层脉动水力压裂卸压增透技术研究与应用[J].煤炭学报,2011,36(12):1996.
    [8] Deng S S, Guo LH, Guan J F, et al. Research on the prediction model for abrasive water jet cutting based on GA-BP neural network[J]. Chemical Engineering Transactions, 2016, 51: 1297-1302.
    [9] Olvyanny AG.Mathematical modeling of hydraulic fracturing in coal seams[J]. Journal of Mining Science, 2005, 41(1) : 61-67.
    [10] 孟小红.水力压裂技术在成庄煤矿低透气性突出煤层的应用及效果[J].矿业安全与环保,2019,46(4):95-97.
    [11] 徐刚,金洪伟,李树刚,等.不同坚固性系数f值煤渗透率分布特征及其井下水力压裂适用性分析[J].西安科技大学学报,2019,39(3):443-451.
    [12] 范超军,李胜,兰天伟,等.不同因素对水力压裂促抽煤层瓦斯的影响[J].中国安全科学学报,2017,27(12):97-102.
    [13] 袁学浩,姚艳斌,甘泉,等.TOUGH-FLAC3D热流固耦合模拟煤储层水力压裂过程[J].石油与天然气地质,2018,39(3):611-619.
    [14] 李国旗,叶青,李建新,等.煤层水力压裂合理参数分析与工程实践[J].中国安全科学学报,2010,20(12):73-78.
    [15] 岳高伟,王宾宾,曹汉生,等.结构异性煤层顺层钻孔方位对有效抽采半径的影响[J].煤炭学报,2017,42(s1):138-147.
    [16] 唐鹏程,郭平,杨素云,等.煤层气成藏机理研究[J].中国矿业,2009,18(2):94-97.
    [17] 贾建称,张泓,贾茜,等.煤储层割理系统研究:现状与展望[J].天然气地球科学,2015,26(9):1621.
  • 期刊类型引用(3)

    1. 赵兵朝,冯杰,赵阳,侯恩科,马云祥,冯欣怡. 覆岩导水裂隙带发育高度动态演化规律研究. 煤矿安全. 2024(02): 176-183 . 本站查看
    2. 王乐,赵岳然. 基于“等效阻水厚度”保水理论的浅表水资源承载力研究. 山西煤炭. 2023(02): 109-115 . 百度学术
    3. 许俊恒,任晓鹏,王小东. 超高水材料充填回收浅埋大巷煤柱参数设计及围岩变形控制研究. 金属矿山. 2021(10): 15-20 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  14
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 5
出版历程
  • 发布日期:  2020-08-19

目录

    /

    返回文章
    返回