• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

闭坑瓦斯矿井残余CO2-矿井水-岩作用实验模拟

汪鹏, 周来, 徐潇, 史博文, 冯启言

汪鹏, 周来, 徐潇, 史博文, 冯启言. 闭坑瓦斯矿井残余CO2-矿井水-岩作用实验模拟[J]. 煤矿安全, 2020, 51(5): 38-44.
引用本文: 汪鹏, 周来, 徐潇, 史博文, 冯启言. 闭坑瓦斯矿井残余CO2-矿井水-岩作用实验模拟[J]. 煤矿安全, 2020, 51(5): 38-44.
WANG Peng, ZHOU Lai, XU Xiao, SHI Bowen, FENG Qiyan. Experimental Simulation of Residual CO2-Mine Water-Rock Interaction in Closed Gassy Coal Mines[J]. Safety in Coal Mines, 2020, 51(5): 38-44.
Citation: WANG Peng, ZHOU Lai, XU Xiao, SHI Bowen, FENG Qiyan. Experimental Simulation of Residual CO2-Mine Water-Rock Interaction in Closed Gassy Coal Mines[J]. Safety in Coal Mines, 2020, 51(5): 38-44.

闭坑瓦斯矿井残余CO2-矿井水-岩作用实验模拟

Experimental Simulation of Residual CO2-Mine Water-Rock Interaction in Closed Gassy Coal Mines

  • 摘要: 基于三相反应模拟系统,以CO2为主要残余瓦斯气体,以煤中典型矿物和高硫酸盐高铁矿井水为固、液反应相,开展闭坑瓦斯矿井水-岩-气反应模拟实验,对比分析了三相反应模拟实验中矿井水化学成分变化和矿物组分的变化。结果表明:在水-岩-气三相模拟反应中,矿井水的pH升高,Eh降低,矿物相的溶解导致矿井水中Ca2+、HCO3-、SO42*以及可溶性SiO2的含量出现不同程度的增加,Mg2+含量无明显变化,总Fe浓度下降,矿化度明显增加;煤岩典型矿物均出现了不同程度的溶解反应,方解石发生溶解作用时,反应过程中会生成新的碳酸盐矿物,黄铁矿在溶解的同时伴随着绿泥石的生成。
    Abstract: Based on the three-phase reaction experiments, taking CO2 as the main gas phase, the typical minerals in coal as solid phase and mine water rich in iron and sulfate as liquid phase, the water-rock-gas reaction simulation experiment of closed gassy mine is carried out. The changes of chemical composition of mine water and coal mineral composition are compared and analyzed. The results have showed that in the mine water-rock-gas reaction, the pH value of the mine water increases and the Eh decreases, and the dissolution of mineral phase resulted in the increase of the content of Ca2+, HCO3-, SO42- and soluble SiO2 in mine water, while the content of Mg2+ did not change significantly, the total Fe concentration decreased, and the salinity increased significantly. Typical minerals of coal and rock have different degrees of dissolution reactions. When calcite dissolves, new carbonate minerals will be generated in the reaction process, while pyrite dissolves with the generation of chlorite.
  • [1] Backhaus C, Mroz A, Willenbrink B. Coal mine gas from abandoned mines[J]. Polish Geological Institute Special Papers, 2002, 7:33-40.
    [2] 崔洪庆,辛事福.废弃煤矿有害气体泄漏灾害及其防治措施[J].矿业安全与环保,2009,36(4):78-80.
    [3] Golding, Bolhar, Boreham, et al. Carbon dioxide-rich coals of the Oaky Creek area, central Bowen Basin: a natural analogue for carbon sequestration in coal systems[J].Australian Journal of Earth Sciences, 2013, 60(1): 125-140.
    [4] 唐巨鹏,潘一山,梁政国.北票矿区废弃矿井煤层气泄漏气源集聚数值模拟[J].煤炭学报,2005,30(3):301.
    [5] 傅耀军,潘树仁,杜金龙.煤矿井地下水系统与矿井涌水[J].中国煤炭地质,2017,29(10):41-45.
    [6] Feng Q, Li T, Qian B, et al. Erratum to: Chemical Characteristics and Utilization of Coal Mine Drainage in China[J]. Mine Water and the Environment, 2014, 33(3): 287-288.
    [7] 沈照理,王焰新,郭华明.水-岩相互作用研究的机遇与挑战[J].地球科学,2012,37(2):207-219.
    [8] 侯贤旭,唐跃刚,宋晓夏,等.重庆中梁山矿区主要煤层的煤岩学和煤相特征[J].煤田地质与勘探,2013,41(5):6-10.
    [9] 姜亚琳,郑刘根,程桦,等.淮北卧龙湖煤矿岩-煤蚀变带矿物变化特征[J].矿物岩石地球化学通报,2017,36(3):510-515.
    [10] 徐晨阳.高瓦斯煤层冲击地压特征机理研究现状[J].山西大同大学学报(自然科学版),2014,30(1):69.
    [11] 王剑光.煤矿瓦斯综合抽采技术及应用[J].中国煤炭,2014(3):111-115.
    [12] 郭慧,王延斌,倪小明,等.高岭石与水-CO2作用后硅元素、铝元素溶出动力学研究[J].中国矿业大学学报,2016,45(3):591-596.
    [13] 李伟荣,刘令云,闵凡飞,等.pH值对微细高岭石颗粒聚团特性的影响机理[J].中国矿业大学学报,2016,45(5):1022-1029.
    [14] Wang T, Wang H, Zhang F, et al. Simulation of CO2 water rock interactions on geologic CO2 sequestration under geological conditions of China[J]. Marine Pollu tion Bulletin, 2013, 76(1/2): 307-314.
    [15] 张阳阳.地质封存条件CO2(SO2)-水-矿物相互作用实验研究[D].北京:中国地质大学(北京),2015.
    [16] Ketzer J M, Iglesias R, Einloft S, et al. Water rock CO2 interactions in saline aquifers aimed for carbon dioxide storage: experimental and numerical modeling studies of the Rio Bonito Formation (Permian), southern Brazi[J]. Applied geochemistry, 2009, 24(5): 760-767.
    [17] Zhu Z, Li M, Lin M, et al. Experimental investigation on CO2-water-rock interactions during CO2 flooding[C]//Power and Energy Engineering Conference (APPEEC) 2011 Asia-Pacific. IEEE, 2011: 1-5.
    [18] 陈勇,王成军,孙祥飞,等.碎屑岩储层矿物溶解度与溶蚀次生孔隙形成机理研究进展[J].矿物岩石地球化学通报,2015,34(4):830-836.
    [19] Ximei Luo, Yunfan Wang, Shuming Wen, et al. Effect of carbonate minerals on quartz flotation behavior under conditions of reverse anionic flotation of iron ores[J]. International Journal of Mineral Processing, 2016, 152: 1-6.
    [20] Ronghua Zhang, Xuetong Zhang, Shumin Hu. Dissolu-tion kinetics of quartz in water at high temperatures across the critical state of water[J]. The Journal of Supercritical Fluids, 2015, 100: 58-69.
    [21] Tania Hidalgo, Laura Kuhar, Andreas Beinlich, et al. Kinetic study of chalcopyrite dissolution with iron(III) chloride in methanesulfonic acid[J]. Minerals Engineering, 2018, 125: 66-74.
    [22] 赵峰华,孙红福,李文生.煤矿酸性矿井水中有害元素的迁移特性[J].煤炭学报,2007,32(3):261-266.
    [23] Hillier S, Fallick A E, Matter A. Origin of Pore-Lining Chlorite in the Aeolian Rotliegend of Northern Germany[J]. Clay Minerals, 2016, 31(2):153-171.
    [24] 冯博,冯其明,卢毅屏.绿泥石与黄铁矿的异相凝聚机理[J].中南大学学报(自然科学版),2015,46(1):14-19.
  • 期刊类型引用(1)

    1. 蒲志强,崔广永. 综放工作面过单面见方冲击危险性多参量监测预警分析. 煤矿安全. 2021(10): 183-189 . 本站查看

    其他类型引用(1)

计量
  • 文章访问数:  27
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 2
出版历程
  • 发布日期:  2020-05-19

目录

    /

    返回文章
    返回