• 中文核心期刊
  • 中国科技核心期刊
  • RCCSE中国核心学术期刊

大采高工作面支架阻力确定及顶板运移规律的采厚效应分析

刘洋, 吴桂义, 孔德中, 李文飞, 郑功勋

刘洋, 吴桂义, 孔德中, 李文飞, 郑功勋. 大采高工作面支架阻力确定及顶板运移规律的采厚效应分析[J]. 煤矿安全, 2018, 49(2): 202-205.
引用本文: 刘洋, 吴桂义, 孔德中, 李文飞, 郑功勋. 大采高工作面支架阻力确定及顶板运移规律的采厚效应分析[J]. 煤矿安全, 2018, 49(2): 202-205.
LIU Yang, WU Guiyi, KONG Dezhong, LI Wenfei, ZHENG Gongxun. Mining Thickness Effect Analysis for Support Capacity Determination and Roof Movement Laws of Large Mining Height Working Face[J]. Safety in Coal Mines, 2018, 49(2): 202-205.
Citation: LIU Yang, WU Guiyi, KONG Dezhong, LI Wenfei, ZHENG Gongxun. Mining Thickness Effect Analysis for Support Capacity Determination and Roof Movement Laws of Large Mining Height Working Face[J]. Safety in Coal Mines, 2018, 49(2): 202-205.

大采高工作面支架阻力确定及顶板运移规律的采厚效应分析

Mining Thickness Effect Analysis for Support Capacity Determination and Roof Movement Laws of Large Mining Height Working Face

  • 摘要: 针对大采高工作面顶板运移规律及工作面支架阻力确定问题,以某矿15101工作面为工程背景,建立了采场力学模型,对支架的工作阻力进行了合理确定。采用理论分析和UDEC数值模拟,研究了大采高工作面顶板运移规律。研究结果表明:随着大采高采场的不断推进,顶板破断后,基本顶形成“砌体梁”结构;在不同采高下,随着采高的增加,工作面的初次来压步距也随着加大,顶板稳定性变差,顶板压力增加,超前支承压力增大且峰值前移,影响范围增加,矿压显现更加强烈;15101工作面的初次来压步距为35.12 m,工作面支架的额定工作阻力为9 100 kN。
    Abstract: In order to determine the roof movement law and working face support resistance with large mining height, taking the 15101 working face as background, the mechanical model of stope roof was established to reasonably determinate support capacity. The roof movement laws of large mining height working face are studied through theoretical analysis and UDEC numerical simulation. The results show that the main roof formed “masonry beam” structure after the damage of roof with the constantly advance of working face. Under different mining height, the first weighting interval of working face increased with the increase of mining height. The roof stability was worse and the roof pressure increased. What’s more, the front abutment pressure increased and the peak forwarded. The strata pressure behaviors were more intense after the damage of roof. To be specific, the first roof weighting interval was about 35.12 m at 15101 working face, and the rated working resistance of support was 9 100 kN.
  • [1] 王家臣.厚煤层开采理论与技术[M].北京:冶金工业出版社,2009.
    [2] 王家臣.我国综放开采技术及其深层次发展问题的探讨[J].煤炭科学技术,2005,33(1):14-17.
    [3] 屠世浩,袁永.厚煤层大采高综采理论与实践[M].徐州:中国矿业大学出版社,2012:31-47.
    [4] 屠世浩,袁永,杨真.中国厚煤层综采采煤现状与展望[J].地球与科学,2009(1):35-40.
    [5] 王金华.我国综采综采技术与装备的现状及发展趋势[J].煤炭科学技术,2006,34(1):4-7.
    [6] 姜海涛,孔德中,张通,等.厚煤层大采高开采端面稳定性分析[J].煤矿安全,2014,45(11):187-189.
    [7] 马忙利.厚煤层综放工作面矿压显现规律模拟与现场实测[J].煤矿安全,2013,44(8):226-228.
    [8] 黄庆享.浅埋煤层高产工作面矿压分析[J].矿山压力与顶板管理,1999,16(3/4):53-56.
    [9] 蒋金泉,代进,王普,等.上覆硬厚岩层破断运动及断顶控制[J].岩土力学,2014,35(S1):264-270.
    [10] 杨永康,李建胜,康天合,等.浅埋厚基岩松软顶板综放采场矿压特征工作面长度效应[J].岩土工程学报,2012,34(4):709-716.
    [11] 于雷,闫少宏,尹希文,等.支护阻力作用下综放开采顶板结构稳定性分析及应用[J].煤矿开采,2012,17(1):12-14.
    [12] 弓培林,靳钟铭.大采高综采采场顶板控制力学模型研究[J].岩石力学与工程学报,2008,27(1):193.
    [13] 杨胜利,王兆会,孔德中,等.大采高采场覆岩破断演化过程及支架阻力的确定[J].采矿与安全工程学报,2016,33(2):199-207.
    [14] 康建荣,王金庄.采动覆岩力学模型及断裂破坏条件分析[J].煤炭学报,2002,27(1):16-20.
    [15] 钱鸣高,石平五,许家林.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2010.
  • 期刊类型引用(5)

    1. 韩文,余照阳,刘飞,赵浩佑. 基于熵权法改进的模糊贝叶斯网络瓦斯爆炸危险性评估. 煤矿安全. 2025(01): 52-61 . 本站查看
    2. 尹方洲. 煤尘与瓦斯复合环境下的爆炸风险及其控制策略. 当代化工研究. 2024(03): 126-128 . 百度学术
    3. 成连华,李梓凡,郭慧敏,曹东强. 高海拔地区建筑项目应急能力建设路径. 西安科技大学学报. 2024(03): 438-446 . 百度学术
    4. 李小平. U形通风方式下采煤工作面瓦斯爆炸数值模拟及参数优化. 山西冶金. 2024(06): 115-117 . 百度学术
    5. 成连华,李梓凡,郭慧敏,曹东强. 基于区间二元语义信息的高海拔地区建筑施工项目应急能力评价. 科学技术与工程. 2024(21): 9252-9259 . 百度学术

    其他类型引用(11)

计量
  • 文章访问数:  227
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 16
出版历程
  • 发布日期:  2018-02-19

目录

    /

    返回文章
    返回