[1] 昝昕,孔宁,郭丽娜,等.煤矿超层越界监督管理研究[J].中国矿业,2019,28(5):29-32.
ZAN Xin, KONG Ning, GUO Lina, et al. Analysis of the supervision and management of mining beyond specified coal seams[J]. China Mining Magazine, 2019, 28(5): 29-32.
[2] 谷民帅,周光.浅埋煤层超层越界开采防治综合技术研究[J].煤炭科学技术,2018,46(S1):47-53.
GU Minshuai, ZHOU Guang. Research of comprehensive control technology of prohibiting cross boundary mining in shallow buried coal seam[J]. Coal Science and Technology, 2018, 46(S1): 47-53.
[3] 刘立,高俊华,余德清,等.矿山越界开采与采矿权面积关系遥感研究[J].地理空间信息,2019,17(6):47-50.
LIU Li, GAO Junhua, YU Deqing, et al. Remote sensing research on relationship between cross-border mining of mine and mining rights area[J]. Geospatial Information, 2019, 17(6): 47-50.
[4] 王高利.浅析露天矿山超层越界开采的预防与治理[J].世界有色金属,2017(15):71.
WANG Gaoli. Prevention and control of over layer crossing mining in open pit mine[J]. World Nonferrous Metals, 2017(15): 71.
[5] 孙涛.全站仪在井下煤矿超层越界检查中的应用[J].矿山测量,2014(6):43-45.
SUN Tao. Application of total station in the super- layer cross-border checks in underground coal mine[J]. Mine Survey, 2014(6): 43-45.
[6] 张璞.煤矿井下移动机器人自主定位方法研究[D].西安:西安科技大学,2019.
[7] 张小红,罗科干,陶贤露,等.一种基于穿戴式MEMS传感器状态识别的多部位PDR算法[J].武汉大学学报(信息科学版),2021,46(12):1791-1801.
ZHANG Xiaohong, LUO Kegan, TAO Xianlu, et al. A multi-mouted PDR algorithm based on wearable MEMS sensors state recognition[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1791-1801.
[8] 刘元成,蔡成林,韦照川,等.基于PDR和地磁匹配融合的楼层定位方法[J].传感技术学报,2020,33(4):557-563.
LIU Yuancheng, CAI Chenglin, WEI Zhaochuan, et al. Floor positioning method based on fusion of PDR and geomagnetic matching[J]. Chinese Journal of Sensors and Actuators, 2020, 33(4): 557-563.
[9] 左德胜.行人自主导航算法研究[D].哈尔滨:哈尔滨工业大学,2018.
[10] 李少琛.基于MEMS的行人定位技术研究[D].北京:北京理工大学,2016.
[11] 杨辉.基于MEMS传感器的高精度行人导航算法研究[D].厦门:厦门大学,2014.
[12] 李辰祥.基于MEMS行人惯性导航的零速度修正技术研究[D].厦门:厦门大学,2014.
[13] 杨鹏飞.采煤机捷联惯导定位中MEMS惯性器件误差补偿技术[D].西安:西安科技大学,2018.
[14] 岑世欣,高振斌,于明,等.基于自适应阈值的行人惯性导航零速检测算法[J].压电与声光,2019,41(4):601-606.
CEN Shixin, GAO Zhenbin, YU Ming, et al. Pedestrian inertial navigation zero-speed detection algorithm based on adaptive threshold[J]. Piezoelectrics & Acoustooptics, 2019, 41(4): 601-606.
[15] 张伦东,卢晓慧,李军正,等.基于零速修正的行人导航关键技术及研究进展[J].导航定位与授时,2020, 7(3):141-149.
ZHANG Lundong, LU Xiaohui, LI Junzheng, et al. The key technologies and development of pedestrian navigation based on ZUPT[J]. Navigation Positioning and Timing, 2020, 7(3): 141-149.
[16] 朱新宇.基于行人航位推算和MEMS惯性传感器的室内定位算法研究[D].合肥:合肥工业大学,2017.
[17] 王磊,汪洲,任元,等.捷联惯导系统中卡尔曼滤波的应用研究[J].计算机测量与控制,2017,25(6):139-141.
WANG Lei, WANG Zhou, REN Yuan, et al. Application of Kalman filter in strapdown inertial navigation system[J]. Computer Measurement and Control, 2017, 25(6): 139-141.
[18] 许明成,戴邵武.卡尔曼滤波在惯导初始对准中的应用[J].电子设计工程,2017,25(23):43-46.
XU Mingcheng, DAI Shaowu. Kalman filtering and its application in INS initial alignment[J]. Electronic Design Engineering, 2017, 25(23): 43-46.
[19] 赵靖.基于卡尔曼滤波算法的采煤机惯导定位方法[J].工矿自动化,2014,40(10):29-32.
ZHAO Jing. Inertial navigation positioning method of shearer based on Kalman filter algorithm[J]. Industrial and Mine Automation, 2014, 40(10): 29-32.
[20] 马宏伟,张璞,毛清华,等.基于捷联惯导和里程计的井下机器人定位方法研究[J].工矿自动化,2019,45(4):35-42.
MA Hongwei, ZHANG Pu, MAO Qinghua, et al. Research on positioning method of underground robot based on strapdown inertial navigation and odometer[J]. Industry and Mine Automation, 2019, 45(4): 35-42.
[21] 王振远.基于PDR和地图匹配的室内定位方法研究[D].徐州:中国矿业大学,2021.
|