• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
LI Zongwei. Detection method of coal mine cross-border mining based on inertial navigation[J]. Safety in Coal Mines, 2023, 54(8): 234-240.
Citation: LI Zongwei. Detection method of coal mine cross-border mining based on inertial navigation[J]. Safety in Coal Mines, 2023, 54(8): 234-240.

Detection method of coal mine cross-border mining based on inertial navigation

More Information
  • Available Online: September 04, 2023
  • Cross boundary mining will disturb the order of mineral resources development, and form major potential safety hazards, and it has strong concealment. Due to the lack of effective technical means, the mining boundary of the mine can not be monitored quickly and accurately. A coal mine cross-border mining monitoring method based on PDR inertial navigation algorithm and mine map landmark calibration is proposed. The inspectors wear a PDR positioning terminal based on MEMS IMU and hold a PDA device. The mine map is imported into the PDA as the base map of the walking track. The PDA receives the positioning data of the positioning terminal and displays the walking track on the base map in real time and the PDR positioning error is preliminarily corrected through zero speed detection and Kalman filter algorithm. When the inspector reaches the natural landmark position, calibrates the estimation according to the relationship between the trajectory on the PDA interface and the landmark position in the mine map, and updates the coordinate position in the positioning terminal to further calibrate the positioning error. By comparing the track, mining map and the regional scope approved by the department of land and resources, judge whether there is cross-border mining.
  • [1] 昝昕,孔宁,郭丽娜,等.煤矿超层越界监督管理研究[J].中国矿业,2019,28(5):29-32. ZAN Xin, KONG Ning, GUO Lina, et al. Analysis of the supervision and management of mining beyond specified coal seams[J]. China Mining Magazine, 2019, 28(5): 29-32. [2] 谷民帅,周光.浅埋煤层超层越界开采防治综合技术研究[J].煤炭科学技术,2018,46(S1):47-53. GU Minshuai, ZHOU Guang. Research of comprehensive control technology of prohibiting cross boundary mining in shallow buried coal seam[J]. Coal Science and Technology, 2018, 46(S1): 47-53. [3] 刘立,高俊华,余德清,等.矿山越界开采与采矿权面积关系遥感研究[J].地理空间信息,2019,17(6):47-50. LIU Li, GAO Junhua, YU Deqing, et al. Remote sensing research on relationship between cross-border mining of mine and mining rights area[J]. Geospatial Information, 2019, 17(6): 47-50. [4] 王高利.浅析露天矿山超层越界开采的预防与治理[J].世界有色金属,2017(15):71. WANG Gaoli. Prevention and control of over layer crossing mining in open pit mine[J]. World Nonferrous Metals, 2017(15): 71. [5] 孙涛.全站仪在井下煤矿超层越界检查中的应用[J].矿山测量,2014(6):43-45. SUN Tao. Application of total station in the super- layer cross-border checks in underground coal mine[J]. Mine Survey, 2014(6): 43-45. [6] 张璞.煤矿井下移动机器人自主定位方法研究[D].西安:西安科技大学,2019. [7] 张小红,罗科干,陶贤露,等.一种基于穿戴式MEMS传感器状态识别的多部位PDR算法[J].武汉大学学报(信息科学版),2021,46(12):1791-1801. ZHANG Xiaohong, LUO Kegan, TAO Xianlu, et al. A multi-mouted PDR algorithm based on wearable MEMS sensors state recognition[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1791-1801. [8] 刘元成,蔡成林,韦照川,等.基于PDR和地磁匹配融合的楼层定位方法[J].传感技术学报,2020,33(4):557-563. LIU Yuancheng, CAI Chenglin, WEI Zhaochuan, et al. Floor positioning method based on fusion of PDR and geomagnetic matching[J]. Chinese Journal of Sensors and Actuators, 2020, 33(4): 557-563. [9] 左德胜.行人自主导航算法研究[D].哈尔滨:哈尔滨工业大学,2018. [10] 李少琛.基于MEMS的行人定位技术研究[D].北京:北京理工大学,2016. [11] 杨辉.基于MEMS传感器的高精度行人导航算法研究[D].厦门:厦门大学,2014. [12] 李辰祥.基于MEMS行人惯性导航的零速度修正技术研究[D].厦门:厦门大学,2014. [13] 杨鹏飞.采煤机捷联惯导定位中MEMS惯性器件误差补偿技术[D].西安:西安科技大学,2018. [14] 岑世欣,高振斌,于明,等.基于自适应阈值的行人惯性导航零速检测算法[J].压电与声光,2019,41(4):601-606. CEN Shixin, GAO Zhenbin, YU Ming, et al. Pedestrian inertial navigation zero-speed detection algorithm based on adaptive threshold[J]. Piezoelectrics & Acoustooptics, 2019, 41(4): 601-606. [15] 张伦东,卢晓慧,李军正,等.基于零速修正的行人导航关键技术及研究进展[J].导航定位与授时,2020, 7(3):141-149. ZHANG Lundong, LU Xiaohui, LI Junzheng, et al. The key technologies and development of pedestrian navigation based on ZUPT[J]. Navigation Positioning and Timing, 2020, 7(3): 141-149. [16] 朱新宇.基于行人航位推算和MEMS惯性传感器的室内定位算法研究[D].合肥:合肥工业大学,2017. [17] 王磊,汪洲,任元,等.捷联惯导系统中卡尔曼滤波的应用研究[J].计算机测量与控制,2017,25(6):139-141. WANG Lei, WANG Zhou, REN Yuan, et al. Application of Kalman filter in strapdown inertial navigation system[J]. Computer Measurement and Control, 2017, 25(6): 139-141. [18] 许明成,戴邵武.卡尔曼滤波在惯导初始对准中的应用[J].电子设计工程,2017,25(23):43-46. XU Mingcheng, DAI Shaowu. Kalman filtering and its application in INS initial alignment[J]. Electronic Design Engineering, 2017, 25(23): 43-46. [19] 赵靖.基于卡尔曼滤波算法的采煤机惯导定位方法[J].工矿自动化,2014,40(10):29-32. ZHAO Jing. Inertial navigation positioning method of shearer based on Kalman filter algorithm[J]. Industrial and Mine Automation, 2014, 40(10): 29-32. [20] 马宏伟,张璞,毛清华,等.基于捷联惯导和里程计的井下机器人定位方法研究[J].工矿自动化,2019,45(4):35-42. MA Hongwei, ZHANG Pu, MAO Qinghua, et al. Research on positioning method of underground robot based on strapdown inertial navigation and odometer[J]. Industry and Mine Automation, 2019, 45(4): 35-42. [21] 王振远.基于PDR和地图匹配的室内定位方法研究[D].徐州:中国矿业大学,2021.
  • Related Articles

    [1]ZHANG Qian, SONG Haizhou, SU Feng, LIU Jinguo, XU Zhuo. Electrospun PET/Ag nanofiber filter membrane preparation and performance research for individual dust protection[J]. Safety in Coal Mines, 2025, 56(1): 79-85. DOI: 10.13347/j.cnki.mkaq.20230840
    [2]YAO Wanqiang, MENG Yanbin, ZHENG Junliang, XUE Zhiqiang. Research on DEM multiple filtering method for mining subsidence[J]. Safety in Coal Mines, 2024, 55(1): 167-175. DOI: 10.13347/j.cnki.mkaq.20221973
    [3]MENG Dong, XU Xuerui, ZHAO Ying, XIE Hongbo, WANG Fei, LI Jianlong. Improvement of pulse-jet cleaning performance of dust-cleaning filter cartridge based on diffuser and venture-tube[J]. Safety in Coal Mines, 2023, 54(6): 54-59.
    [4]ZHANG Liya, MENG Qingyong, YANG Kun. Recovery Technology of Mine Monitoring Image Based on Wiener Filtering[J]. Safety in Coal Mines, 2019, 50(1): 129-132.
    [5]MA Fengying, ZHAI Bo, DAI Jun. Application of Optimizing Complex Filter in Coal Mine Safety Monitoring System[J]. Safety in Coal Mines, 2016, 47(12): 100-103.
    [6]QU Shijia, WU Fusheng. Kalman Filtering Method in Mine Wind Speed Data Preprocessing[J]. Safety in Coal Mines, 2016, 47(1): 116-118,122.
    [7]CUI Lizhen, WU Di, KANG Kai, HE Jiaxing, WU Song. Underground Coal Mines Tracking Way Based on Improved Kalman Filter Algorithm[J]. Safety in Coal Mines, 2015, 46(11): 114-117.
    [8]XU Jian. Carbon Monoxide Filtering Device for Coal Mine Refuge Chamber[J]. Safety in Coal Mines, 2015, 46(2): 89-91.
    [9]GUO Weihu, WANG Feng, GAO Fei. Management Practice of Zero Gas Overrun in High Gas Mine[J]. Safety in Coal Mines, 2014, 45(9): 133-136.
    [10]WANG Wen-kai. How Coal Production to Achieve "Zero Harm"[J]. Safety in Coal Mines, 2013, 44(10): 234-235.
  • Cited by

    Periodical cited type(2)

    1. 宋涛涛,曹瑞,赵闯,王汝杰,程东江,韩东. 基于高精度实景三维的矿山智慧监管应用探索. 山东国土资源. 2025(02): 44-50 .
    2. 陈林,曹幼元,黄长军. 矿山越界开采预防措施初探. 中国矿业. 2024(07): 37-40 .

    Other cited types(0)

Catalog

    Article views (14) PDF downloads (8) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return