• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
GUO Ruirui. Law of overburden movement in coal seam group mining and the determination of “three zones” height[J]. Safety in Coal Mines, 2023, 54(8): 106-117.
Citation: GUO Ruirui. Law of overburden movement in coal seam group mining and the determination of “three zones” height[J]. Safety in Coal Mines, 2023, 54(8): 106-117.

Law of overburden movement in coal seam group mining and the determination of “three zones” height

More Information
  • Available Online: September 04, 2023
  • In order to study the law of overburden movement and the distribution range of “three zones” under the condition of coal seam group mining, based on the general situation of 42106 working face of Shendong Buertai Coal Mine, the physical experiment method of similar model is used to simulate the overburden movement characteristics of 2-2 coal and 4-2 coal successively, and the characteristics of overburden caving, stress change and strata subsidence are compared and analyzed respectively. The results show that after the mining of the upper coal seam face, the failure degree of the overlying rock is low as a whole, and the stress peak value mainly exists in the leading influence area of the working face, block hinge and so on. After the lower coal mining, the fracture zone communicates with the upper coal goaf, resulting in that the fracture zone of the goaf of the composite coal seam is much larger than that of the upper coal seam, the stress is larger than that of the upper coal seam as a whole, and the roof subsidence increases significantly. The overburden has gone through three stages of separation and separation increasing, and finally closed. The “three zones” height of 42106 working face is determined by the data measurement of observation points, and the borehole monitoring is carried out in the field to verify the rationality of similar physical simulation results.
  • 科技,2019(7):169-171. LI Xinfeng, WU Haojie. Study on the influence of water-filled aquifers in the water-flowing fractured zone on the coal mine production[J]. Shandong Coal Science and Technology, 2019(7): 169-171. [3] 杨小刚.厚煤层综放开采顶板水害防治技术研究[J].西部探矿工程,2017,29(8):132-134. YANG Xiaogang. Study on roof water disaster prevention technology in fully mechanized caving mining of thick coal seam[J]. West-China Exploration Engineering, 2017, 29(8): 132-134. [4] 刘志高,张守宝,皇甫龙.腾达煤矿倾斜煤层覆岩运移规律及“三带”高度的确定[J].采矿与岩层控制工程学报,2022,4(3):66-75. LIU Zhigao, ZHANG Shoubao, HUANGFU Long. Overburden migration law of inclined coal seam and determination of “upper three zones” height in Tengda Coal Mine[J]. Journal of Mining And Strata Control Engineering, 2022, 4(3): 66-75. [5] 来兴平,张旭东,单鹏飞,等.厚松散层下三软煤层开采覆岩导水裂隙发育规律[J].岩石力学与工程学报,2021,40(9):1739-1750. LAI Xingping, ZHANG Xudong, SHAN Pengfei. et al. Study on development law of water-conducting fractures in overlying strata of three soft coal seam mining under thick loose layers[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(9): 1739-1750. [6] 王晓振,许家林,韩红凯,等.顶板导水裂隙高度随采厚的台阶式发育特征[J].煤炭学报,2019,44(12):3740-3749. WANG Xiaozhen, XU Jialin, HAN Hongkai, et al. Stepped development characteristic of water flowing fracture height with variation of mining thickness[J]. Journal of China Coal Society, 2019, 44(12): 3740-3749. [7] 黄庆享,曹健.浅埋近距煤层开采三场演化规律及煤柱群结构控制效应[J].煤炭学报,2021,46(S1):1-9. HUANG Qingxiang, CAO Jian. Research on three-field evolution and control effect of pillars structural in shallow buried closely spaced multiseams mining[J]. Journal of China Coal Society, 2021, 46(S1): 1-9. [8] 刘瑞瑞,刘洋,方刚,等.袁大滩煤矿覆岩破坏规律及顶板水害防治对策[J].煤矿安全,2022,53(7):82 -91. LIU Ruirui, LIU Yang, FANG Gang, et al. Law of overburden failure and roof water damage in Yuandatan Coal Mine[J]. Safety in Coal Mines, 2022, 53(7): 82 -91. [9] 余学义,穆驰,李剑锋.孟巴矿强含水体下分层开采覆岩导水裂隙带发育规律[J].煤炭学报,2022,47(S1):29-38. YU Xueyi, MU Chi, LI Jianfeng. Development law of water-conducting fracture zone in overlying rock with layered mining under strong water-bearing body in Barapukuria Coal Mine[J]. Journal of China Coal Society, 2022, 47(S1): 29-38. [10] 陈陆望,王迎新,欧庆华,等.考虑覆岩结构影响的近松散层开采导水裂隙带发育高度预测模型研究?以淮北煤田为例[J].工程地质学报,2021,29(4):1048-1056. CHEN Luwang, WANG Yingxin, OU Qinghua, et al. Prediction model for development height of water-conducting fractured zone during mining near loose stratum considering influence of overburden structure: A case study of Huaibei Coalfield[J]. Journal of Engineering Geology, 2021, 29(4): 1048-1056. [11] 张海荣.较薄厚煤层采场覆岩“三带”划分理论计算与数值模拟研究[J].煤炭工程,2013,45(9):83-86. ZHANG Hairong. Theoretical calculation and numerical simulation of “three zones” division in stope of thin thick coal seam[J]. Coal Engineering, 2013, 45(9): 83-86. [12] 张玉军,李凤明.高强度综放开采采动覆岩破坏高度及裂隙发育演化监测分析[J].岩石力学与工程学报,2011,30(S1):2994-3001. ZHANG Yujun, LI Fengming. Monitoring analysis of fissure development evolution and height of overburden failure of high tension fully-mechanized caving mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1): 2994-3001. [13] 岳勃.开采覆岩裂隙带发育高度实测应用[J].山东煤炭科技,2020(2):142-144. YUE Bo. Practical measurement and application of development height of overburden fracture zone[J]. Shandong Coal Science and Technology, 2020(2): 142-144. [14] 喻明红.顶板覆岩破坏高度预测及计算公式的优化分析[J].内蒙古煤炭经济,2018(18):142-143. YU Minghong. Prediction of failure height of roof overburden and optimization analysis of calculation formula[J]. Inner Mongolia Coal Economy, 2018(18): 142-143 [15] 付玉平,宋选民,邢平伟.浅埋煤层大采高超长工作面垮落带高度的研究[J].采矿与安全工程学报,2010,27(2):190-194. FU Yuping, SONG Xuanmin, XING Pingwei. Study of the mining height of caving zone in large mining height and super-long face of shallow seam[J]. Journal of Mining & Safety Engineering, 2010, 27(2): 190-194. [16] 吴仁伦,王亚飞,徐东亮,等.工作面面宽对煤层群开采瓦斯卸压运移“三带”范围的影响[J].采矿与安全工程学报,2017,34(1):192-198. WU Renlun, WANG Yafei, XU Dongliang, et al. Effects of working face width on the scope of the “three zones” of gas pressure relief and migration in coal seam group mining[J]. Journal of Mining & Safety Engineering, 2017, 34(1): 192-198. [17] 崔鹏飞,陈向军.大采高工作面采空区“三带”高度判定研究[J].煤,2022,31(3):8-13. CUI Pengfei, CHEN Xiangjun. Study on height determination of “three zones” in goaf with large mining height working face[J]. Coal, 2022, 31(3): 8-13. [18] 林建成,郭林生,李可,等.小庄矿40309工作面应力分布及覆岩“三带”演化规律研究[J].煤炭技术,2020,39(11):71-74. LIN Jiancheng, GUO Linsheng, LI Ke. Research on stress distribution and evolution law of overburden “Three Zones” of 40309 face in Xiaozhuang Coal Mine[J]. Coal Technology, 2020, 39(11): 71-74. [19] 孟祥军,赵鹏翔,王绪友,等.大倾角高瓦斯煤层采动覆岩“三带”微震监测及瓦斯抽采效果[J].煤炭科学技术,2022,50(1):177-185. MENG Xiangjun, ZHAO Pengxiang, WANG Xuyou, et al. “Three zones” micro-seismic monitoring and analysis of gas drainage effect of overlying strata in gob of high dip high gas seam[J]. Coal Science and Technology, 2022, 50(1): 177-185. [20] 孟祥军,林海飞,王超,等.巨厚煤层综放工作面覆岩“三带”演化特征[J].煤矿安全,2021,52(6):85-90. MENG Xiangjun, LIN Haifei, WANG Chao, et al. Evolution characteristics of overburden three zones in fully-mechanized caving face in huge thick coal seam[J]. Safety in Coal Mines, 2021, 52(6): 85-90. [21] 王刚.无煤柱开采条件下采空区上覆岩层“三带”探测及上行开采可行性研究[J].煤炭科技,2022,43(1):33-38. WANG Gang. Feasibility study on “three zones” detection and upward mining of overlying strata in goaf under the condition of no coal pillar mining[J]. Coal Science & Technology Magazine, 2022, 43(1): 33-38. [22] 杨振,杨友伟,初艳鹏.浅埋煤层开采覆岩“三带”分布规律研究[J].山西煤炭,2010,30(9):36-38. YANG Zhen, YANG Youwei, CHU Yanpeng. Distribution law of overburden bed’s three zones in shallow seam mining[J]. Shanxi Coal, 2010, 30(9): 36-38. [23] 王二斌.官地矿3#煤层采空区底板应力分布对8#煤层工作面回采影响分析[J].山东煤炭科技,2018(7):171-173. WANG Erbin. Analysis of influence of floor stress distribution of 3# coal seam goaf in Guandi Mine on mining face of 8# coal seam[J]. Shandong Coal Science and Technology, 2018(7): 171-173. [24] 马长年.金川二矿区下向分层采矿充填体力学行为及其作用的研究[D].长沙:中南大学,2011. [25] 田普.二次采动影响巷道围岩破坏特征及控制技术研究[D].西安:西安科技大学,2021.
  • Cited by

    Periodical cited type(10)

    1. 秦兴林,曹垚林,孟祥宁,倪兴. 近距离煤层群上覆煤层开采底板卸压范围及效果考察研究. 煤炭技术. 2025(02): 68-71 .
    2. 陈立新,付玉平,李川田. 多煤层重复采动条件下大巷底鼓破坏规律研究. 能源与节能. 2025(02): 59-63 .
    3. 程健维,盛树平,冉德志,马永侦. 基于IFM-KS模型的多层煤开采上覆岩层移动模型. 采矿与岩层控制工程学报. 2024(01): 38-51 .
    4. 赵东升. 综采面坚硬顶板覆岩运移规律研究. 内蒙古煤炭经济. 2024(01): 52-54 .
    5. 何家金. 布雅矿区井工煤矿隐蔽致灾因素普查及分析. 内蒙古煤炭经济. 2024(02): 13-15 .
    6. 韩猛,杜莉莉,耿新胜,黄阳,马一多,赵威,甘英杰. 基于响应曲面法近距离煤层群导水裂隙带影响因素分析. 煤炭工程. 2024(05): 114-120 .
    7. 张国建,付连龙,郭广礼,卫伟,高鑫,李怀展,郭庆彪,杨向升. 营盘壕煤矿深部多煤层开采地表移动变形规律及最优错距研究. 煤矿安全. 2024(05): 35-50 . 本站查看
    8. 刘超峰. 大倾角煤层长壁采场矸石局部充填覆岩运移规律模拟研究. 陕西煤炭. 2024(09): 1-5+32 .
    9. 吴访,苏士杰,姜坤,郝英豪,王超勇. 葫芦素煤矿上覆岩体运移规律及“上三带”发育高度. 中国矿业. 2024(S2): 283-288 .
    10. 蒯琛,左宇军,郑禄林,林健云,陈斌,陈庆港,荣鹏. 缓倾斜浅埋煤层覆岩裂隙演化与分形表征研究. 贵州大学学报(自然科学版). 2024(06): 49-56 .

    Other cited types(1)

Catalog

    Article views (33) PDF downloads (18) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return