• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
PANG Zeng-wei, LU Ai-hong, ZHOU Jiang. Numerical Simulation of Stablity of the Soft Rock Roadway Under the Water Pressure[J]. Safety in Coal Mines, 2013, 44(2): 53-56.
Citation: PANG Zeng-wei, LU Ai-hong, ZHOU Jiang. Numerical Simulation of Stablity of the Soft Rock Roadway Under the Water Pressure[J]. Safety in Coal Mines, 2013, 44(2): 53-56.

Numerical Simulation of Stablity of the Soft Rock Roadway Under the Water Pressure

More Information
  • Published Date: February 19, 2013
  • This paper uses COMSOL software to build numerical calculation models at different depths and with or without water pressure, and studys soft rock roadway stress and deformation laws in the hydrous and the anhydrous conditions.The results show that the creep deformation of soft rock roadway increases with the increasing of the depth, the deformation in the buried depth of 900 m increases 300% than in the buried depth of 500 m; the the deformation in roof and floor and the two sides is more severe in the role of water pressure, the deformation in water pressure increases 30% than the deformation in no water pressure.
  • [1]
    王永岩.软岩巷道变形与压力分析控制及预测[D].阜新:辽宁工程技术大学, 2001.
    [2]
    薛世峰.非混溶饱和两相渗流与孔隙介质耦合作用的理论研究Ⅱ-方程解耦与有限元公式[J].地震地质,1999, 21(3): 252-260.
    [3]
    刘建军.裂缝性低渗透油藏流-固耦合理论及应用[J].岩石力学与工程学报,2003:614.
    [4]
    董平川.变形介质流固耦合渗流的数值模型及其应用[J].地质力学学报,2005,11(3):274-277.
    [5]
    黎水泉.双重孔隙介质流固耦合理论模型[J].水动力学研究与进展,2001,16(4):461-465.
    [6]
    吉小明.裂隙岩体流固耦合双重介质模型的有限元计算[J].岩土力学,2003,24(5):748-754.
    [7]
    杨彩弘,王永岩,魏佳.软岩蠕变过程中单相渗流固流耦合及数学模型[J].黑龙江科技学院学报,2004,14(5):297-299.
    [8]
    杨彩红,王永岩,李春林.含水率变化对深部工程岩体蠕变规律的影响[J].化工矿产地质,2007,29(1):55-59.
    [9]
    孙明,李治平,樊中海.流固耦合渗流数学模型及物性参数模型研究[J].石油天然气学报,2007, 29(6): 115-119.
    [10]
    卢爱红, 茅献彪, 张晓春.软岩巷道的时间效应模拟[J].矿山压力与顶板管理,2004(3):1-4.
  • Related Articles

    [1]LI Qiang, LI Wenming, ZHANG Ding. Safety Evaluation of Protective Bench in Northern End Slope of Haerwusu Open-Pit Coal Mine[J]. Safety in Coal Mines, 2018, 49(6): 229-232,241.
    [2]SHENG Lu. Research on Safety Protection of Coal Mine Automatic Production System in China Pingmei Shenma Group[J]. Safety in Coal Mines, 2018, 49(6): 108-111.
    [3]LIU Chungang, SUN Zhenping. Study on Strength of Hole Pretection by Casing for Large Diameter Drilling Extraction Borehole[J]. Safety in Coal Mines, 2017, 48(6): 20-23.
    [4]JIANG Sunlun, YAO Shanhua, REN Mingyuan. Monitoring System for Protective Device of Inclined Shaft Runaway Car in Coal Mine[J]. Safety in Coal Mines, 2016, 47(9): 117-119.
    [5]SONG Guodong. Runaway Car Protection System Based on Multi-master Communication Technology[J]. Safety in Coal Mines, 2016, 47(7): 122-124.
    [6]JIANG Zhennan, WANG Haoming. Sparks Protection and Maintenance for Mine-used Explosion-proof Enclosure[J]. Safety in Coal Mines, 2015, 46(3): 114-115.
    [7]ZHANG Shutao. Protecting Wall Design for Refuge Chamber in Underground Coal Mine[J]. Safety in Coal Mines, 2015, 46(1): 82-84,88.
    [8]YUAN Yafei, DENG Kazhong, LIU Hui, CHEN Bingqian. The Mining Failure Characteristics and Control Measures of High-grade Highway[J]. Safety in Coal Mines, 2014, 45(6): 218-221.
    [9]ZHOU Meng-ying, LIANG Guo-zhi. Personal Protection Technology in High Temperature Mine[J]. Safety in Coal Mines, 2013, 44(12): 82-84.
    [10]XUE Chun-yun. Discussion on Application Problem of Comprehensive Prevention and Control Measures for Coal and Gas Outburst[J]. Safety in Coal Mines, 2013, 44(3): 173-175.

Catalog

    Article views (969) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return