XU Wenjie, YAO Yanjun, WANG Yi, WANG Kai. Study on energy variation of coal containing gas during low temperature adsorption process[J]. Safety in Coal Mines, 2023, 54(2): 40-45.
    Citation: XU Wenjie, YAO Yanjun, WANG Yi, WANG Kai. Study on energy variation of coal containing gas during low temperature adsorption process[J]. Safety in Coal Mines, 2023, 54(2): 40-45.

    Study on energy variation of coal containing gas during low temperature adsorption process

    More Information
    • Published Date: February 19, 2023
    • In order to obtain the energy change rule in coal adsorbing methane process, methane adsorption experiments were carried out with the temperature of 30 ℃, 15 ℃, 0 ℃, -15℃, -30 ℃, -45 ℃ and the initial adsorption pressure of 1 MPa, 1.5 MPa, 2 MPa, 2.5 MPa, 3 MPa by the high and low temperature intelligent adsorption experiment chamber. The results show that increasing the gas injection pressure and decreasing the adsorption temperature are two important factors that affect the increase of temperature variation in the process of methane adsorption; the surface free energy of coal samples with a certain mass decreases and the heat increases before and after methane adsorption, and the difference increases gradually due to the increase of methane pressure; in the process of coal adsorbing methane, either pressure boost or temperature drop will increase the coal temperature variation, it is essentially a phenomenon that methane molecular potential energy of coal surface free energy is converted into heat value to maintain the overall energy balance.
    • [1]
      王俏,王兆丰,马树俊,等.冷冻取芯过程煤样温度变化特性研究[J].中国安全科学学报,2021,31(2):76-81.

      WANG Qiao, WANG Zhaofeng, MA Shujun, et al. Study on temperature variation of coal sample in process of freezing coring[J]. China Safety Science Journal, 2021, 31(2): 76-81.
      [2]
      任浩洋,王兆丰.测定瓦斯含量取样方式存在问题分析及解决对策[J].煤矿安全,2015,46(4):148-51.

      REN Haoyang, WANG Zhaofeng. Problem analysis and solutions about sampling way of gas content determination[J]. Safety in Coal Mines, 2015, 46(4): 148-51.
      [3]
      WANG Zhaofeng, TANG Xu, YUE Gaowei, et al. Physical simulation of temperature influence on methane sorption and kinetics in coal: Benefits of temperature under 273.15 K[J]. Fuel, 2015, 158: 207-216.
      [4]
      WANG Long, WANG Zhaofeng, QI Chenjun, et al. Physical Simulation of Temperature and Pressure Evolvement in Coal by Different Refri geration Modes for Freezing Coring[J]. ACS Omega, 2019, 4(23): 20178-20187.
      [5]
      王兆丰,岳高伟,康博,等.低温环境对煤的瓦斯解吸抑制效应试验[J].重庆大学学报(自然科学版),2014, 37(9):106-112.

      WANG Zhaofeng, YUE Gaowei, KANG Bo, et al. Gas desorption inhibitory effect of coal in low temperature environment[J]. Journal of Chongqing University(Natural Science Edition), 2014, 37(9): 106-112.
      [6]
      岳高伟,王兆丰,谢策,等.降温促进煤体对瓦斯吸附效应的试验研究[J].煤炭科学技术,2016,44(4):45 -49.

      YUE Gaowei, WANG Zhaofeng, XIE Ce, et al. Experiment study on gas adsorption effect promoted by temperature reducing of coal mass[J]. Coal Science and Te-chnology, 2016, 44(4): 45-49.
      [7]
      岳高伟,王兆丰,康博.低温环境煤的瓦斯扩散系数时变特性[J].中国安全科学学报,2014,24(2):107-112.

      YUE Gaowei, WANG Zhaofeng, KANG Bo. Time-varying characteristics of gas diffusion coefficient in low temperature environment[J]. China Safety Science Journal, 2014, 24(2): 107-112.
      [8]
      秦雷,林海飞,兰世瑞,等.低温液氮作用下煤体瓦斯吸附特性试验研究[J].煤炭科学技术,2020,48(10):105-112.

      QIN Lei, LIN Haifei, LAN Shirui, et al. Experimental study on coal gas adsorption characteristics under action of low temperature liquid nitrogen[J]. Coal Science and Technology, 2020, 48(10): 105-112.
      [9]
      娄秀芳,王兆丰,董庆祥.低温条件下瓦斯解吸规律数值模拟[J].煤炭技术,2015,34(4):156-158.

      LOU Xiufang, WANG Zhaofeng, DONG Qingxiang. Numerical simulation of gas desorption law under condition of low temperature[J]. Coal Technology, 2015, 34(4): 156-158.
      [10]
      刘志祥,冯增朝.煤体对瓦斯吸附热的理论研究[J].煤炭学报,2012,37(4):647-653.

      LIU Zhixiang, FENG Zengchao. Theoretical study on adsorption heat of methane in coal[J]. Journal of China Coal Society, 2012, 37(4): 647-653.
      [11]
      郭立稳,俞启香,王凯.煤吸附瓦斯过程温度变化的试验研究[J].中国矿业大学学报,2000,29(3):287-289.

      GUO Liwen, YU Qixiang, WANG Kai. Experimental study on change in coal temperature during adsorbing gas[J]. Journal of China University of Mining & Technology, 2000, 29(3): 287-289.
      [12]
      郝建峰,梁冰,孙维吉,等.考虑吸附/解吸热效应的含瓦斯煤热-流-固耦合模型及数值模拟[J].采矿与安全工程学报,2020,37(6):1282-1290.

      HAO Jianfeng, LIANG Bing, SUN Weiji, et al. Gassy coal thermal-hydraulic-mechanical coupling model and numerical simulation considering adsorption/desorption thermal effect[J]. Journal of Mining & Safety Engineering, 2020, 37(6): 1282-1290.
      [13]
      马树俊,王兆丰,任浩洋,等.低温变温条件下煤吸附瓦斯过程研究[J].中国安全科学学报,2019,29(10):124-129.

      MA Shujun, WANG Zhaofeng, REN Haoyang, et al. Study on gas adsorption process of coal at low and variable temperature[J]. China Safety Science Journal, 2019, 29(10): 124-129.
      [14]
      何鑫,李绍泉,段正鹏.不同温度和压力条件下煤样对瓦斯的吸附特性研究[J].矿业研究与开发,2018, 38(12):84-88.

      HE Xin, LI Shaoquan, DUAN Zhengpeng. Study on gas adsorption characteristics of coal sample under different temperatures and pressures[J]. Mining Research and Development, 2018, 38(12): 84-88.
      [15]
      杨涛,聂百胜.煤粒吸附瓦斯过程中的温度变化研究[J].煤炭学报,2015,40(S2):380-385.

      YANG Tao, NIE Baisheng. Temperature variation tests during the gas adsorption process[J]. Journal of China Coal Society, 2015, 40(S2): 380-385.
      [16]
      凡永鹏,霍中刚,赵晶,等.煤的表面自由能随瓦斯抽采的变化规律[J].煤矿安全,2021,52(12):15-20.

      FAN Yongpeng, HUO Zhonggang, ZHAO Jing, et al. Surface free energy of coal its variation law with gas extraction[J]. Safety in Coal Mines, 2021, 52(12): 15-20.
      [17]
      张仰强.不同温度条件下煤体表面吸附甲烷的热力学分析[J].煤炭工程,2018,50(11):95-98.

      ZHANG Yangqiang. Thermodynamic analysis of methane adsorption on coal surface under different temperature conditions[J]. Coal Engineering, 2018, 50(11): 95-98.
      [18]
      位乐.煤的瓦斯吸附动力学机制及温度效应[J].煤矿安全,2020,51(8):7-11.

      WEI Le. Kinetic mechanism and temperature effect of coal gas adsorption[J]. Safety in Coal Mines, 2020, 51(8): 7-11.
      [19]
      刘珊珊,孟召平.等温吸附过程中不同煤体结构煤能量变化规律[J].煤炭学报,2015,40(6):1422-1427.

      LIU Shanshan, MENG Zhaoping. Study on energy variation of different coal-body structure coals in the process of isothermal adsorption[J]. Journal of China Coal Society, 2015, 40(6): 1422-1427.
      [20]
      简阔,张玉贵,赫少攀,等.构造煤甲烷吸附表面能研究[J].煤田地质与勘探,2014,42(1):31-34.

      JIAN Kuo, ZHANG Yugui, HE Shaopan, et al. The surface energy of methane adsorption of tectonic coal[J]. Coal Geology & Exploration, 2014, 42(1): 31-34.
    • Related Articles

      [1]MA Yunlong. Experimental study on the influence of circular hole obstacles on pressure overlap[J]. Safety in Coal Mines, 2022, 53(7): 70-73.
      [2]YANG Chunli, LI Xiangchun. Effect of Number and Blockage Ratio of Obstacles on Gas Explosion[J]. Safety in Coal Mines, 2015, 46(12): 1-3.
      [3]LIU Jingqiang, DU Feng. Effect of Crossing Angles on Stability of Roadway Divergence[J]. Safety in Coal Mines, 2015, 46(7): 200-203.
      [4]YIN De-wei, YIN Qian, KONG Ling-chang. Research on Optimization Mechanism of Roadway Stability With Large Cross Section and Shallow Buried[J]. Safety in Coal Mines, 2013, 44(10): 56-58,62.
      [5]HUANG Sen-lin. Stress Distribution Laws of Bolt-mesh Supporting Roadway With Large Cross Section[J]. Safety in Coal Mines, 2013, 44(9): 41-43.
      [6]ZHU Jian. Analysis of Influence Radius of Hydraulic Crossing Seam Punching Technology[J]. Safety in Coal Mines, 2013, 44(5): 167-169,173.
      [7]LI Lei, HOU Duan-ming, LI Nong. Support Technology for Soft Roadway With Multiple Cross-mining[J]. Safety in Coal Mines, 2013, 44(5): 111-113.
      [8]DING Xiao-yong, TAN Ying-xin, LI Yuan. The Influences of Stereo Obstacles on Gas Explosion Characteristics in Horizontal Pipe[J]. Safety in Coal Mines, 2012, 43(8): 4-7.
      [9]LIU Yi-ping, YANG Ye-xin. Analysis of Residual Coal Spontaneous Combustion in Cross Uphill Mining Gob[J]. Safety in Coal Mines, 2012, 43(4): 121-123.
      [10]OU Jian-Chun, CHEN Yong-Chao. Discussion on A New Rock Cross-cut Coal Uncovering Technology[J]. Safety in Coal Mines, 2012, 43(3): 138-141.
    • Cited by

      Periodical cited type(6)

      1. 解北京,栾铮,李晓旭,蔺淑蓉,石嘉煜,李恒. 预裂炮孔近区煤体爆破损伤特性研究. 煤炭技术. 2024(08): 7-12 .
      2. 毕慧杰,莫云龙,李少刚. 复合厚硬顶板深孔爆破与快速装药工艺实践. 煤矿安全. 2024(12): 31-38 . 本站查看
      3. 陈啸林,彭磊. 爆破参数对预裂爆破裂纹扩展规律的影响研究. 有色金属(矿山部分). 2023(04): 97-106 .
      4. 谢二伟,杨永康,孙得志. 地应力条件下水压爆破顶板裂纹扩展规律影响因素研究. 工程爆破. 2023(05): 96-104 .
      5. 孙得志,杨永康,郭俊庆,赵国飞,庞宏,谢二伟. 煤层坚硬顶板爆破裂纹的扩展规律. 爆破器材. 2022(04): 58-64 .
      6. 厉美杰,杜军,李泽华,王洪强,王君. PVC管装入多孔粒铵油炸药在露天矿预裂爆破中的应用. 采矿技术. 2021(06): 144-146 .

      Other cited types(4)

    Catalog

      Article views (20) PDF downloads (17) Cited by(10)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return