• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
HOU Enke, YANG Siliang, WEN Qiang, GAO Lijun, WANG Jianwen, CHE Xiaoyang, TONG Renjian, ZHANG Qi. Characteristics and water abundance evaluation of concealed burning area in southern of Ningtiaota Coal Mine[J]. Safety in Coal Mines, 2022, 53(11): 191-199.
Citation: HOU Enke, YANG Siliang, WEN Qiang, GAO Lijun, WANG Jianwen, CHE Xiaoyang, TONG Renjian, ZHANG Qi. Characteristics and water abundance evaluation of concealed burning area in southern of Ningtiaota Coal Mine[J]. Safety in Coal Mines, 2022, 53(11): 191-199.

Characteristics and water abundance evaluation of concealed burning area in southern of Ningtiaota Coal Mine

More Information
  • Published Date: November 19, 2022
  • Coal seam fire area is widely distributed in western coal area of China. When there is a strong hydraulic connection between the burned rock aquifer and other aquifers in the coal seam fire area, it will pose a serious threat to the safe mining of coal mine. Taking the 1-2 upper coal concealed burning area in the southeast corner of Ningtiaota Coal Mine as an example, based on various past hydro-geological data, the ancient topography before the deposition of Baode Formation was restored, and the stratum characteristics of the concealed fire area and the geological characteristics of the compensation channel drainage were analyzed. The factor analysis method is used to extract the characteristic factors reflecting the water abundance of burnt rock and weathered bedrock aquifer, and the comprehensive water-rich zone of burnt rock and weathered bedrock aquifer is obtained through GIS superposition method. The results show: the 1-2 upper coal seam burned from the early Cretaceous to the Pliocene, the development of ancient gullies provides favorable conditions for the formation of spontaneous combustion and burning metamorphic rocks in coal seams; the burnt rock aquifer and weathered bedrock aquifer in the concealed burning area are basically connected together to form a unified aquifer; the overburden rock combination relationship on 1-2 upper coal concealed burning area can be divided into three types, namely burnt rock-weathered bedrock combination, coal seam-burnt rock-weathered bedrock combination, coal seam-burnt rock-normal bedrock-weathered bedrock combination. Strong water abundance areas are mainly distributed in a small area in the north and west of the burning area, the medium water abundance areas are distributed in the burning area in a belt along the northwest-southeast direction; the eastern and northern areas of the concealed burning area are relatively weak in water abundance; the weak water abundance areas are distributed outside concealed burning area. Compared with the water inflow of underground water exploration and release boreholes, the evaluation of water abundance is in good agreement with the practice.
  • [1]
    王双明,段中会,马丽,等.西部煤炭绿色开发地质保障技术研究现状与发展趋势[J].煤炭科学技术,2019, 47(2):1-6.

    WANG Shuangming, DUAN Zhonghui, MA Li, et al. Research status and future trends of geological assuance technology for coal green development in Western China[J]. Coal Science and Technology, 2019, 47(2): 1-6.
    [2]
    姬中奎.柠条塔矿S1210工作面突水条件分析[J].煤矿安全,2014,45(8):188-191.

    JI Zhongkui. Analysis on water inrush condition of S1210 working face in Ningtiaota Coal Mine[J]. Safety in Coal Mines, 2014, 45(8): 188-191.
    [3]
    董书宁,刘其声.华北型煤田中奥陶系灰岩顶部相对隔水段研究[J].煤炭学报,2009,34(3):289-292.

    DONG Shuning, LIU Qisheng. Study on relative aguic-lude existed in mid-ordovician limestone top in North China coalfield[J]. Journal of China Coal Society, 2009, 34(3): 289-292.
    [4]
    侯恩科,陈培亨.神府煤田煤层自燃研究[J].西安矿业学院学报,1993(2):137-142.

    HOU Enke, CHEN Peiheng. Study on spontaneous combustion of coal seams in Shenfu coal field[J]. Journal of Xi’an Mining Institute, 1993(2): 137-142.
    [5]
    陈述彭,鲁学军,周成虎.地理信息系统导论[M].北京:科学出版社,1999.
    [6]
    许珂.台格庙矿区顶板涌(突)水危险性评价与矿井涌水量预测[D].北京:中国矿业大学(北京),2016.
    [7]
    侯恩科,童仁剑,王苏健,等.陕北侏罗纪煤田风化基岩富水性Fisher模型预测方法[J].煤炭学报,2016, 41(9):2312-2318.

    HOU Enke, TONG Renjian, WANG Sujian, et al. Prediction method for the water enrichment of weathered bedrock based on Fisher model in Northern Shaaxi Jurassic coalfield[J]. Journal of China Coal Society, 2016, 41(9): 2312-2318.
    [8]
    曾一凡,李哲,宫厚建,等.顶板风化基岩含水层富水特征与涌(突)水危险性预测[J].煤炭工程,2018,50(2):100-104.

    ZENG Yifan, LI Zhe, GONG Houjian, et al. Water abundance characteristics in aquifer of weathered roof bedrock and prediction on water inrush risk[J]. Coal Engineering, 2018, 50(2): 100-104.
    [9]
    郭启琛,李文平,郭太刚.基于FAHP-GRA法的风积沙覆盖风化带潜水富水性评价[J].煤矿安全,2018, 49(12):35-40.

    GUO Qichen, LI Wenping, GUO Taigang. Evaluation of phreatic water abundance in weathering zone covered by eolian sand based on FAHP-GRA[J]. Safety in Coal Mines, 2018, 49(12): 35-40.
    [10]
    张池,王鹏飞.烧变岩及风化基岩层富水性探查[J].煤炭技术,2018,37(3):175-177.

    ZHANG Chi, WANG Pengfei. Study on water-richness of burnt rock and weathered bedrock[J]. Coal Technology, 2018, 37(3): 175-177.
    [11]
    吴正飞,邢修举,代凤强.综采工作面顶板上覆烧变岩富水性的精细探测研究[J].能源与环保,2018,40(5):140-143.

    WU Zhengfei, XING Xiuju, DAI Fengqiang. Research on precise exploration of water-fired buried rock on fully-mechanized working face[J]. China Energy and Environmental Protection, 2018, 40(5): 140-143.
    [12]
    李明星.塔里木盆地北缘侏罗系烧变岩富水性精细探测[J].煤矿开采,2018,23(5):15-17.

    LI Mingxing. Exquisite exploration of Jurassic burnt rock water abundance of Northern Part of Tarim Basin[J]. Coal Mining Technology, 2018, 23(5): 15-17.
    [13]
    白铭波,霍军鹏,雷鹏翔.TEM反演技术在浅埋煤层烧变岩水勘查中的应用[J].煤炭技术,2020,39(6):54-56.

    BAI Mingbo, HUO Junpeng, LEI Pengxiang. Application of TEM inversion technology in exploration of burnt rock water in shallow coal seam[J]. Coal Technology, 2020, 39(6): 54-56.
    [14]
    杨明慧,刘池洋.鄂尔多斯中生代陆相盆地层序地层格架及多种能源矿产聚集[J].石油与天然气地质,2006(4):563-570.

    YANG Minghui, LIU Chiyang. Sequence stratigraphic framework and its control on accumulation of various energy resources in the Mesozoic continental basins in Ordos[J]. Oil & Gas Geology, 2006(4): 563-570.
    [15]
    郭顺,王震亮,闫继福.陕北地区侏罗系层序地层与油气聚集关系[J].地层学杂志,2010,34(2):212.

    GUO Shun, WANG Zhenliang, YAN Jifu. Relation of sequence stratigraphy and oil-gas accumulation of the Jurassic in the Northern Shaanxi[J]. Journal of Stratigraphy, 2010, 34(2): 212.
    [16]
    黄克兴,侯恩科.鄂尔多斯盆地北部早、中侏罗世古气候[J].煤田地质与勘探,1988(3):3-8.

    HUANG Kexing, HOU Enke. Early-middle Jurassic climate in Northern Ordos basin[J]. Coal Geology & Exploration, 1988(3): 3-8.
    [17]
    侯恩科,童仁剑,冯洁,等.烧变岩富水特征与采动水量损失预计[J].煤炭学报,2017,42(1):175-182.

    HOU Enke, TONG Renjian, FENG Jie, et al. Water enrichment characteristics of burnt rock and prediction on water loss caused by coal mining[J]. Journal of China Coal Society, 2017, 42(1): 175-182.
    [18]
    范立民.生态脆弱区烧变岩研究现状及方向[J].西北地质,2010,43(3):57-65.

    FAN Limin. Research status and research directions of burnt rocks in vulnerable ecological region[J]. Northwestern Geology, 2010, 43(3): 57-65.
    [19]
    姬中奎,薛小渊,杨志斌,等.神府煤田张家峁煤矿烧变岩与水库水力联系研究[J].中国煤炭地质,2019, 31(4):57-61.

    JI Zhongkui, XUE Xiaoyuan, YANG Zhibin, et al. Study on hydraulic connection between burnt rock and reservoir in Zhangjiamao Coalmine, Shenfu Coalfield[J]. Coal Geology of China, 2019, 31(4): 57-61.
    [20]
    J Paul Brooks, Eva K Lee. Analysis of the consistency of a mixed integer programming-based multi-category constrained discriminant model[J]. Annals of Operations Research, 2010, 174(1):147-168.
    [21]
    Ali Sophian, Gui Yun Tian, David Taylor, et al. A feature extraction technique based on principal component analysis for pulsed Eddy current NDT[J]. NDT & E International, 2003, 36(1): 37-41.
    [22]
    杨永国.数学地质[M].徐州:中国矿业大学出版社,2010.
  • Related Articles

    [1]WANG Li, ZHANG Shihao, LI Lei, LI Guangli, ZHANG Qian. Development and application of miner safety rejection sensitivity scale[J]. Safety in Coal Mines, 2022, 53(4): 243-247.
    [2]MA Xiongwei, WANG Zhaofeng, YANG Tenglong, CHEN Jinsheng, LI Yanfei, XI Jie. Sensitivity analysis of main control factors for efficiency of submerged jet crushing coal containing gas[J]. Safety in Coal Mines, 2021, 52(11): 147-153.
    [3]GAO Jianan, WU Fengliang. Calculation and sensitivity analysis of convective heat transfer coefficient between roadway wall and airflow[J]. Safety in Coal Mines, 2021, 52(9): 211-217.
    [4]ZHANG Yaqi, PENG Wenqing. Sensitivity Analysis of Influence of Many Factors on Coal Permeability Under Non-isostatic Deviating Stress[J]. Safety in Coal Mines, 2020, 51(9): 16-19.
    [5]HOU Jifeng, LIU Hao. Sensitivity Study on Main Controlling Factors of Borehole Shrinkage for Expansive Mudstone in Coal Mine[J]. Safety in Coal Mines, 2018, 49(6): 20-23.
    [6]QIAO Kang. Sensitivity Analysis of Low Rank Coal Reservoir and Its Influence on Coalbed Methane Drainage[J]. Safety in Coal Mines, 2018, 49(5): 14-16,22.
    [7]LI Ke, ZHANG Jinhong. Sensitivity Analysis on Main Factors of Inclined Coal Floor Damage Depth[J]. Safety in Coal Mines, 2017, 48(5): 210-213.
    [8]AN Zhaofeng, LI Shugang, LIN Haifei, DING Yang, LI Li. Orthogonal Experiment on Sensitivity of Impact Factors in Coal Adsorbing Methane[J]. Safety in Coal Mines, 2015, 46(2): 1-4.
    [9]ZHANG Peng, DU Ze-sheng, LI Zhong-hui, MA Yan-kun, XUE Shi-peng, WEI Li-na. Sensitivity Analysis of Outburst Hazard Evaluation Index Based on Principal Component Analysis[J]. Safety in Coal Mines, 2012, 43(4): 1-4.
    [10]CHOU Hai-sheng. Sensitivity Analysis of Effect Inspection Index for Working Face Outburst Prevention[J]. Safety in Coal Mines, 2012, 43(1): 83-85.
  • Cited by

    Periodical cited type(9)

    1. 吴晓春. 精确人员定位感应一体化识别卡的设计与实现. 化工自动化及仪表. 2025(02): 259-263+268 .
    2. 胡亮. 基于电力载波通信的精确定位读卡器设计. 化工自动化及仪表. 2025(02): 283-288 .
    3. 戴剑波. 基于国产芯片的矿车车皮精确定位标识卡. 煤矿安全. 2024(11): 222-226 . 本站查看
    4. 温贤培. 煤矿现场人员二维精确定位方法. 煤矿安全. 2023(01): 225-229 . 本站查看
    5. 樊启祥,林鹏,谢亮,刘元达,朱强,李果,辜斌,魏鹏程. 水电工程复杂场景施工资源定位管理技术研究. 水力发电学报. 2022(02): 113-124 .
    6. 陈杰. 智慧矿山安全防控多系统井下融合与应急联动技术研究. 煤矿安全. 2022(05): 99-105 . 本站查看
    7. 王恒晓. 基于多源数据融合的煤矿安全态势感知分析平台研究. 煤矿安全. 2022(08): 242-246 . 本站查看
    8. 张鹏,周代勇. 基于UWB的洗煤厂定位方法研究. 自动化与仪器仪表. 2022(08): 130-132+137 .
    9. 白怡明,曾祥玉,李杰,辛凤阳,郭晓松,朱金龙. 基于卡尔曼滤波算法的UWB+IMU组合精确定位系统在选煤厂中的应用. 选煤技术. 2022(05): 85-90 .

    Other cited types(0)

Catalog

    Article views (77) PDF downloads (17) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return