• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
YI Xin, HU Zhen, WANG Weifeng, DENG Jun. Key technologies for intelligent monitoring and early warning of coal spontaneous combustion[J]. Safety in Coal Mines, 2022, 53(9): 31-37.
Citation: YI Xin, HU Zhen, WANG Weifeng, DENG Jun. Key technologies for intelligent monitoring and early warning of coal spontaneous combustion[J]. Safety in Coal Mines, 2022, 53(9): 31-37.

Key technologies for intelligent monitoring and early warning of coal spontaneous combustion

More Information
  • Published Date: September 19, 2022
  • Coal spontaneous combustion disaster is one of the main disasters in the process of coal mining. The acquisition of multi-source three-dimensional parameters of spontaneous coal combustion, the in-depth analysis of data, the establishment of mathematical models and accurate prediction are the basic guarantee for the production of coal mining enterprises. This paper summarizes the basic status of research and application of coal spontaneous combustion monitoring and early warning from three aspects: monitoring methods, mathematical analysis and prediction methods of coal spontaneous combustion multi-source three-dimensional parameters, and further prospects the future development direction of coal spontaneous combustion intelligent monitoring and accurate prediction.
  • [1]
    袁亮.我国煤炭工业高质量发展面临的挑战与对策[J].中国煤炭,2020,46(1):6-12.

    YUAN Liang. Challenges and countermeasures for high quality development of China’s coal industry[J]. Chinese Coal, 2020, 46(1): 6-12.
    [2]
    邓军,白祖锦,肖旸,等.煤自燃灾害防治技术现状与挑战[J].煤矿安全,2020,51(10):118-125.

    DENG Jun, BAI Zujin, XIAO Yang, et al. Present situation and challenge of coal spontaneous combustion disasters prevention and control technology[J]. Safety in Coal Mines, 2020, 51(10): 118-125.
    [3]
    郭庆.采空区煤自燃预警技术及应用研究[D].北京,中国矿业大学(北京),2021.
    [4]
    王德明.矿井火灾学[M].徐州:中国矿业大学出版社.2008.
    [5]
    高建.矿井空区漏风条件下的分区通风系统研究[D].西安:西安建筑科技大学,2021.
    [6]
    翟小伟,尚博,郑增荣,等.浅埋近距离煤层相邻对向开采工作面煤自燃防治技术与应用[J].煤矿安全,2021,52(6):98-103.

    ZHAI Xiaowei, SHANG Bo, ZHENG Zengrong, et al. Prevention and control technology of coal spontaneous combustion in adjacent opposite mining face of shallow and close coal seam and its application[J]. Safety in Coal Mines, 2021, 52(6): 98-103.
    [7]
    张箫剑.基于光纤测温技术的采空区煤温监测研究[D].淮南:安徽理工大学,2015.
    [8]
    国家安全生产监督管理总局.煤矿安全规程[M].北京:煤炭工业出版社,2022.
    [9]
    王丹.RVM在煤自燃预测中的应用研究[J].煤,2022, 31(4):1-5.

    WANG Dan. Application research of RVW in prediction of coal spontaneous combustion[J]. Coal, 2022, 31(4): 1-5.
    [10]
    李颖,朱令起.优选煤自燃预测定量指标研究[J].河北能源职业技术学院学报,2021,21(4):57-58.

    LI Ying, ZHU Lingqi. Study on optimization of quantitative index for prediction of coal spontaneous combustion[J]. Journal of Hebei Energy College of Vocation and Technology, 2021, 21(4): 57-58.
    [11]
    孙继平,孙雁宇.矿井火灾监测与趋势预测方法研究[J].工矿自动化,2019,45(3):1-4.

    SUN Jiping, SUN Yanyu. Research on methods of mine fire monitoring and trend prediction[J]. Industrial and Mining Automation, 2019, 45(3): 1-4.
    [12]
    秦波涛,仲晓星,王德明,等.煤自燃过程特性及防治技术研究进展[J].煤炭科学技术,2021,49(1):66.

    QIN Botao, ZHONG Xiaoxing, WANG Deming, et al. Research progress of coal spontaneous combustion process characteristics and prevention technology[J]. Coal Science and Technology, 2021, 49(1): 66.
    [13]
    颜试.煤矿火灾分布式光纤温度监测预警系统[J].铜陵学院学报,2010,9(6):69-70.
    [14]
    刘晨,谢军,辛林.煤自燃预测预报理论及技术研究综述[J].矿业安全与环保,2019,46(3):92-95.

    LIU Chen, XIE Jun, XIN Lin. Review of theory and technology research on prediction of coal spontaneous combustion[J]. Mining Safety & Environmental Protection, 2019, 46(3): 92-95.
    [15]
    Onifade M, Genc B, Bada S. Spontaneous combustion liability between coal seams: A thermogravimetric study[J]. International Journal of Mining Science and Technology, 2020(6): 2095-2686.
    [16]
    费金彪.煤自燃阶段判定理论与分级预警方法研究[D].西安:西安科技大学,2019.
    [17]
    赵晓虎,孙鹏帅,杨眷,等.应用于煤自燃指标气体体积分数浓度在线监测系统[J].煤炭学报,2021,46(S1):319-327.

    ZHAO Xiaohu, SUN Pengshuai, YANG Juan, et al. Online monitoring system of index gases concentration applied to coal spontaneous combustion[J]. Journal of China Coal Society, 2021, 46(S1): 319-327.
    [18]
    高峰,王文才,李建伟,等.浅埋煤层群开采复合采空区煤自燃预测[J].煤炭学报,2020,45(S1):336.

    GAO Feng, WANG Wencai, LI Jianwei, et al. Prediction of coal spontaneous combustion in compound gob of shallow seam group mining[J]. Journal of China Coal Society, 2020, 45(S1): 336.
    [19]
    王连聪,梁运涛.煤无氧升温中CO产生及变化规律的光谱分析[J].煤炭学报,2017,42(7):1790-1794.

    WANG Liancong, LIANG Yuntao. Spectral analysis on laws of generation and variability of CO during oxygen-free programmed temperature of coal[J]. Journal of China Coal Society, 2017, 42(7): 1790-1794.
    [20]
    郭一铭,何启林.煤层自燃发火指标气体的选择及预测预报应用[J].安徽理工大学学报(自然科学版),2019,39(3):60.

    GUO Yiming, HE Qilin. Selection and application of forecasting of signal gases for coal seam spontaneous combustion[J]. Journal of Anhui University of Science and Technology(Natural Science), 2019, 39(3): 60.
    [21]
    梁运涛.煤炭自然发火预测预报的气体指标法[J].煤炭科学技术,2008,36(6):5-8.

    LIANG Yuntao. Gas index method to predict coal spontaneous combustion[J]. Coal Science and Technology, 2008, 36(6): 5-8.
    [22]
    陈晓坤.煤自燃多源信息融合预警研究[D].西安:西安科技大学,2012.
    [23]
    贾传志,丁佳丽.基于灰色关联分析的煤自燃预测指标可信度研究[J].内蒙古煤炭经济,2018(12):4.

    JIA Chuanzhi, DING Jiali. Reliability prediction of coal spontaneous combustion based on grey correlation analysis[J]. Inner Mongolia Coal Economy, 2018(12): 4.
    [24]
    赵琳琳,温国锋,邵良杉.不均衡数据下的采空区煤自燃PCA-Ada Boost 预测模型[J].中国安全科学学报,2018,28(3):74-78.

    ZHAO Linlin, WEN Guofeng, SHAO Liangshan. PCA-Ada boost model for predicting coal spontaneous combustion in caving zone with imbalanced data[J]. China Safety Science Journal, 2018, 28(3): 74-78.
    [25]
    王福生,王建涛,顾亮,等.煤自燃预测预报多参数指标体系研究[J].中国安全生产科学技术,2018,14(6):45-51.

    WANG Fusheng, WANG Jiantao, GU Liang, et al. Study on multi-parameter index system for prediction and forecast of coal spontaneous combustion[J]. Journal of Safety Science and Technology, 2018, 14(6): 45-51.
    [26]
    郑学召,童鑫,郭军,等.煤矿智能监测与预警技术研究现状与发展趋势[J].工矿自动化,2020,46(6):35-40.

    ZHENG Xuezhao, TONG Xin, GUO Jun, et al. Research status and development trend of intelligent monitoring and early warning technology in coal mines[J]. Industry and Mining Automation, 2020, 46(6): 35-40.
    [27]
    余明高,周世轩,褚廷湘,等.立体瓦斯抽采条件下煤自燃预测预报标志气体的优化选择[J].河南理工大学学报(自然科学版),2012,31(1):1-5.

    YU Minggao, ZHOU Shixuan, CHU Tingxiang, et al. The optimal selection of sign gas to predict coal spontaneous combustion under the condition of stereo gas extraction[J]. Journal of Henan Polytechnic University(Natural Science), 2012, 31(1): 1-5.
    [28]
    Chu Tao, Li Peng, Chen Yun. Risk assessment of gas control and spontaneous combustion of coal under gas drainage of an upper tunnel[J]. International Journal of Mining Science and Technology, 2019(3): 491-498.
    [29]
    王建涛,王福生.煤自燃分阶段灰色加权预测预报决策系统[C]//第30届全国高校安全科学与工程学术年会暨第12届全国安全工程领域专业学位研究生教育研讨会论文集.北京:公共安全科学技术学会,2019:405.
    [30]
    王鑫阳,LUO Yi,张勋,等.基于绝热氧化试验结果的煤自燃预测模型研究[J].中国安全科学学报,2017, 27(6):67-72.

    WANG Xinyang, LUO Yi, ZHANG Xun, et al. A study on predicting model for self-heating behavior of coal based on adiabatic oxidation experiment[J]. China Safety Science Journal, 2017, 27(6): 67-72.
    [31]
    WANG Junfeng, ZHANG Yulong, XUE Sheng, et al. Assessment of spontaneous combustion status of coal based on relationships between oxygen consumption and gaseous product emissions[J]. Fuel Processing Technology, 2018, 179: 60-71.
    [32]
    文虎,赵向涛,王伟峰,等.不同煤体自燃指标性气体函数模型特征分析[J].煤炭转化,2020,43(1):16.

    WEN Hu, ZHAO Xiangtao, WANG Weifeng, et al. Analysis on characteristic of indicator gases of spontaneous combustion of different coals[J]. Coal Conversion, 2020, 43(1): 16.
    [33]
    王磊,武术静,李长青.基于修正灰色马尔科夫模型的煤自燃预测[J].计算机仿真,2014,31(11):416.

    WANG Lei, WU Wujing, LI Changqing. Coal spontaneous combustion prediction based on Grey-markov model[J]. Computer Simulation, 2014, 31(11): 416.
    [34]
    高凯.基于支持向量的煤自燃预测方法研究[D].西安:西安科技大学,2012.
    [35]
    邓军,周少柳,马砺,等.基于PCA-PSOSVM的煤自燃程度预测研究[J].矿业安全与环保,2016,43(5):27-31.

    DENG Jun, ZHOU Shaoliu, MA Li, et al. Research on prediction method of coal spontaneous combustion degree based on PCA-PSOSVM[J]. Mining Safety & Environmental Protection, 2016, 43(5): 27-31.
    [36]
    邓军,雷昌奎,曹凯,等.采空区煤自燃预测的随机森林方法[J].煤炭学报,2018,43(10):2800-2808.

    DENG Jun, LEI Changkui, CAO Kai, et al. Random forest method for predicting coal spontaneous combustion in gob[J]. Journal of China Coal Society, 2018, 43(10): 2800-2808.
    [37]
    温荣岩.基于改进粒子群小波神经网络的煤自燃预测系统[D].北京:中国矿业大学(北京),2019.
    [38]
    梁运涛,王树刚,林琦,等.煤炭自然发火的介尺度现象分析及建模[J].中国矿业大学学报,2017,46(5):979-987.

    LIANG Yuntao, WANG Shugang, LIN Qi, et al. Analysis and modeling of mesoscale phenomenon on coal spontaneous combustion[J]. Journal of China University of Mining & Technology, 2017, 46(5): 979-987.
    [39]
    王永湘.利用指标气体预测预报煤矿自燃火灾[J].煤矿安全,2001,32(6):15-16.

    WANG Yongxiang. Predication and forecasting coal mine spontaneous combustion by using index-gases[J]. Safety in Coal Mines, 2001, 32(6): 15-16.
    [40]
    张典,冯海龙.不同风量下煤自燃早期预警指标实验研究[J].内蒙古科技与经济,2022(1):90-93.
    [41]
    梁彦波,江宁,赵金海,等.采空区破碎岩石承压变形及分形特征研究[J].矿业研究与开发,2019,39(5):60-64.

    LIANG Yanbo, JIANG Ning, ZHAO Jinhai, et al. Study on compressive deformation and fractal characteristics of broken rocks in goaf[J]. Mining Research and Development, 2019, 39(5): 60-64.
  • Cited by

    Periodical cited type(13)

    1. 杨玉修. 艰险山区铁路建造期通信综合承载网研究. 中国铁路. 2024(06): 99-106 .
    2. 高永霞,孙运强,姚爱琴,赵文强,张婉婷,石喜玲. 基于LoRa的预制菜冷藏设备物联网终端设计. 国外电子测量技术. 2024(08): 64-70 .
    3. 黄炜旭,王青. 基于微控制器的无线爆破系统设计. 煤矿爆破. 2024(03): 35-38 .
    4. 赵鹏. 基于LoRa的矿区环境实时远程监测系统设计. 榆林学院学报. 2023(02): 64-67 .
    5. 吴培洁,龙光利. 基于Arduino和LoRa的新型冠状病毒感染监控系统的设计. 物联网技术. 2023(10): 126-128 .
    6. 陈贤,周澍. 一种低功耗综采工作面人员定位系统设计. 煤矿安全. 2023(11): 218-221 . 本站查看
    7. 黄德晟,李华杰,谢芳芳,郭勇军,郑新瑜. 基于LoRa技术的离子型稀土矿山监测系统设计. 工业控制计算机. 2023(11): 39-41 .
    8. 甘路. 基于Lora的工业机器人运动控制通信技术研究. 中国宽带. 2023(10): 16-18 .
    9. 李志涵,伯磊,王雪蓓,路原野,马一然. 基于物联网的校园疫情监控系统设计与实现. 物联网技术. 2022(02): 76-79 .
    10. 李萍丰,张金链,徐振洋,张兵兵,杨飞,李新. 基于LoRa物联的远程智能起爆系统研发. 金属矿山. 2022(07): 42-49 .
    11. 王清峰,王兴,肖玉清. 煤矿用自动钻机快速组网技术研究. 矿业安全与环保. 2022(05): 1-5+10 .
    12. 高万明,周飞,李峥. 基于运动状态的学生体测监测系统设计. 长春师范大学学报. 2021(08): 48-55 .
    13. 张洪光,刘亭亭,吕秀莎,张莹,聂剑红,李青. 三维露天矿山场景中异构分簇组网协议研究. 工矿自动化. 2021(12): 68-74 .

    Other cited types(6)

Catalog

    Article views (90) PDF downloads (79) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return