• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
MU Chi, YU Xueyi, ZHANG Dongdong, MAO Xuwei. Analysis of deformation law of mining landslide in loess gully area[J]. Safety in Coal Mines, 2021, 52(8): 208-217.
Citation: MU Chi, YU Xueyi, ZHANG Dongdong, MAO Xuwei. Analysis of deformation law of mining landslide in loess gully area[J]. Safety in Coal Mines, 2021, 52(8): 208-217.

Analysis of deformation law of mining landslide in loess gully area

More Information
  • Published Date: August 19, 2021
  • Aiming at the problems of natural disasters such as landslide and ground fissure caused by mining in loess gully area, based on the mining geological conditions of Hanjiawan Coal Mine, we sorted out the monitoring data of the surface observation points in the mining area. The surface monitoring results show that the working face generally experiences start-up period, active period and decline period from mining to stop. In the initial stage of mining, the surface movement and deformation of the mining area are not obvious; when the advancing distance of 12106 working face is between 13 m and 109 m, the surface movement and deformation change dramatically, and the maximum subsidence can reach 1 963 mm, which is easy to cause landslide disaster. At the same time, the physical and mechanical parameters of the rock mass of the slope of Hanjiawan Coal Mine were selected. The FLAC3D software was used to simulate the formation mechanism of surface landslide hazard under different slope angles. The overlying strata structure is destroyed due to the mining of working face, the whole subsidence basin is shifted to the center, and the slope is subjected to tensile and compression deformation, resulting in plastic failure. The results show that when the slope inclination angle is greater than 60°, the displacement of the slope is not uniform, and the rock layer with large displacement loses support, resulting in landslide disaster; when it is less than 30°, the slip surface of the bedrock surface develops to the surface, and the occurrence of landslide disaster is less likely.
  • [1]
    刘辉.西部黄土沟壑区采动地裂缝发育规律及治理技术研究[D].徐州:中国矿业大学,2014.
    [2]
    范立民,李勇,宁奎斌,等.黄土沟壑区小型滑坡致大灾及其机理[J].灾害学,2015,30(3):67.

    FAN Limin, LI Yong, NING Kuibin, et al. Small landslide and disaster-causing mechanism in gully loess area[J]. Journal of Catastrophology, 2015, 30(3): 67.
    [3]
    余学义,张恩强.开采损害学[M].北京:煤炭工业出版社,2004.
    [4]
    赵兵朝,刘宾,王建文,等.柠条塔煤矿叠置开采地表岩移参数分析[J].煤矿安全,2016,47(9):213-216.

    ZHAO Bingchao, LIU Bin, WANG Jianwen, et al. Analysis of surface rock movement parameters in ningtiaota coal mine superimposed mining[J]. Safety in Coal Mines, 2016, 47(9): 213-216.
    [5]
    李维光,楼建国.降雨条件下顺层滑坡影响因素和稳定性分析[J].采矿与安全工程学报,2016,23(4):498-501.

    LI Weiguang, LOU Jianguo. Analysis of affecting factors of along -bed landslide of rock mass and its stability under a rainfall condition[J]. Journal of Mining & Safety Engineering, 2016, 23(4): 498-501.
    [6]
    张平.黄土沟壑区采动地表沉陷破坏规律研究[D].西安:西安科技大学,2010.
    [7]
    余学义,施文刚,张平,等.黄土沟壑区地表移动变形特征分析[J].矿山测量,2010,12(2):38-40.

    YU Xueyi, SHI Wengang, ZHANG Ping, et al. Analysis of surface movement and deformation characteristics[J].Mine Surveying, 2010, 12(2): 38-40.
    [8]
    Boris Benko. Numberial Modelling of Complex Slope Deformations[D]. Canada: The University of Saskatchewan, 1997.
    [9]
    梁明,汤伏全.地下采矿诱发山体滑坡的规律研究[J].西安矿业学院学报,1995,15(4):331.

    LIANG Ming, TANG Fuquan. Research on rules of mountain landslide caused by underground mining[J].Journal of Xi’an Mining Institute, 1995, 15(4): 331.
    [10]
    李聪,朱杰兵,汪斌,等.滑坡不同变形阶段演化规律与变形速率预警判据研究[J].岩石力学与工程学报,2016,35(7):1407-1414.

    LI Cong, ZHU Jiebing, WANG Bin, et al. Critical deformation velocity of landslides in different deformation phases[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1407-1414.
    [11]
    张蒙.山区煤矿采动滑坡地形条件分析[D].徐州:江苏师范大学,2013.
    [12]
    黄成飞.厚湿陷性黄土层下综放开采地表移动规律研究[D].焦作:河南理工大学,2011.
    [13]
    刘宾.黄土沟壑区浅埋近距煤层群开采地表移动变形规律研究[D].西安:西安科技大学,2017.
    [14]
    龙建辉,任杰,曾凡桂,等.双软弱夹层岩质滑坡的滑动模式及变形规律[J].煤炭学报,2019,44(10):3031-3040.

    LONG Jianhui, REN Jie, ZENG Guifan, et al. Sliding mode and deformation law of double weak interlayer rock landslide[J]. Journal of China Coal Society, 2019, 44(10): 3031-3040.
    [15]
    余学义,穆驰.神东矿区土地复垦效益评价[J].西安科技大学学报,2019,39(2):201-208.

    YU Xueyi, MU Chi. Benefit evaluation of land reclamation in Shendong mining area[J]. Journal of Xi'an University of Science and Technology, 2019, 39(2): 201-208.
    [16]
    徐帅,李元辉,安龙,等.地下开采扰动下高陡边坡稳定性研究[J].采矿与安全工程学报,2012,29(6):888-893.

    XU Shuai, LI Yuanhui, AN Long, et al. Study on high and steep slope stability in condition of underground mining disturbance[J]. Journal of Mining & Safety Engineering, 2012, 29(6): 888-893.
    [17]
    周伟,韩流,才庆祥.内排土场对端帮边坡稳定性影响研究[J].采矿与安全工程学报,2015,32(4):671.

    ZHOU Wei, HAN Liu, CAI Qingxiang. Influence of inner dump on end-slope stability[J]. Journal of Mining & Safety Engineering, 2015, 32(4): 671.
    [18]
    余学义,穆驰,张冬冬.厚松散层大采高开采地表移动变形规律研究[J].煤矿安全,2020,51(4):235.

    YU Xueyi, MU Chi, ZHANG Dongdong. Study on law of surface movement and deformation in thick loose layer with large mining height[J]. Safety in Coal Mines, 2020, 51(4): 235.
    [19]
    刘辉,刘小阳,邓喀中,等.基于UDEC数值模拟的滑动型地裂缝发育规律[J].煤炭学报,2016,41(3):625-632.

    LIU Hui, LIU Xiaoyang, DENG Kazhong, et al. Developing law of sliding ground fissures based on numerical simulation using UDEC[J]. Journal of China Coal Society, 2016, 41(3): 625-632.
    [20]
    穆驰.采动地表移动变形对长输管道影响评价研究[D].西安:西安科技大学,2017.
    [21]
    郭文兵,白二虎,杨达明.煤矿厚煤层高强度开采技术特征及指标研究[J].煤炭学报,2018,43(8):2117-2125.

    GUO Wenbing, BAI Erhu, YANG Daming. Study on the technical characteristics and index of thick coal seam high-intensity mining in coal mine[J]. Journal of China Coal Society, 2018, 43(8): 2117-2125.
    [22]
    韩流,周伟,舒继森,等.时效边坡下的端帮易滑区靠帮开采方法[J].采矿与安全工程学报,2013,30(5):756-760.

    HAN Liu, ZHOU Wei, SHU Jisen, et al. Steep mining method in slippery area of end-slope under slope timeliness[J]. Journal of Mining & Safety Engineering, 2013, 30(5): 756-760.
    [23]
    姚雪玲,傅伯杰,吕一河.黄土丘陵沟壑区坡面尺度土壤水分空间变异及影响因子[J].生态学报,2012, 32(16):4961-4968.

    YAO Xueling, FU Bolie, LV Yihe. Spatial variability and influencing factors of soil moisture at slope scale in loess hilly and gully region[J]. Acta Ecologica Sinica, 2012, 32(16): 4961-4968.
    [24]
    冯军,谭志祥,邓喀中.黄土沟壑区沟谷坡度对采动裂缝发育规律的影响[J].煤矿安全,2015,46(5):216.

    FENG Jun, TAN Zhixiang, DENG Kazhong. The influence of gully slope on the development of mining cracks in the loess gully area[J]. Safety in Coal Mines, 2015, 46(5): 216-219.
    [25]
    孙洪星.风积沙和黄土覆盖下煤层开采地表移动规律对比研究[J].煤矿开采,2008,13(1):6-9.

    SUN Hongxing. Rules Comparison of surface movement induced by coal mining under aeolian sand and loess[J]. Coal Mining Technology, 2008, 13(1): 6-9.
    [26]
    郭文兵,王云广.基于绿色开采的高强度开采定义及其指标体系研究[J].采矿与安全工程学报,2017,34(4):616-623.

    GUO Wenbing, WANG Yunguang. The definition of high-intensity mining based on green coal mining and its index system[J]. Journal of Mining & Safety Engineering, 2017, 34(4): 616-623.
    [27]
    赵建军,李金锁,马运韬,等.降雨诱发采动滑坡物理模拟试验研究[J].煤炭学报,2020,45(2):760-769.

    ZHAO Jianjun, LI Jinsuo, MA Yuntao, et al. Study on physical simulation test of rainfall-induced mining landslide[J]. Journal of China Coal Society, 2020, 45(2):760-769.
    [28]
    孙魁,李永红,刘海南,等.彬长矿区“对滑型”黄土滑坡及其形成机制[J].煤炭学报,2017,42(11):2989.

    SUN Kui, LI Yonghong, LIU Hainan, et al. “Opposite-slip” loess landslide and its formation mechanism in Binchang mining area[J]. Journal of China Coal Society, 2017, 42(11): 2989.
    [29]
    余学义,穆驰,毛旭魏,等.大采高综采工作面支架合理工作阻力研究[J].煤矿安全,2017,48(6):196.

    YU Xueyi, MU Chi, MAO Xuwei, et al. Research on reasonable working resistance of support at fully mechanized mining face with large mining height[J]. Safety in Coal Mines, 2017, 48(6): 196.
    [30]
    李培现,谭志祥.开采影响地表点变形状态分析及主变形值计算[J].采矿与安全工程学报,2017,34(1):96-102.

    LI Peixian, TAN Zhixiang. Mining influenced ground deformation state analysis and principal deformation calculation[J]. Journal of Mining & Safety Engineering, 2017, 34(1): 96-102.
    [31]
    余学义,伊士献,赵兵潮.采动损害计算机反演模拟评价方法[J].矿山压力与顶板管理,2002,19(4):102-104.

    YU Xueyi, YIN Shixian, ZHAO Bingchao. The method of inversion simulation to damage of surface caused by underground mining[J]. Ground Pressure and Strata Control, 2002, 19(4): 102-104.
    [32]
    张文泉,刘海林,赵凯.厚松散层薄基岩条带开采地表沉陷影响因素研究[J].采矿与安全工程学报,2016,33(6):1065-1071.

    ZHANG Wenquan, LIU Hailin, ZHAO Kai. Influential factors on surface subsidence in stripe mining under thick unconsolidated layers and thin bedrock[J]. Journal of Mining & Safety Engineering, 2016, 33(6): 1065-1071.
  • Related Articles

    [1]ZHOU Xin, ZHOU Yuncheng, JIN Shujun, LIU Xiaodan, LIU Hui, GUO Yu. Research on secondary node system architecture of coal industry Internet identity resolution[J]. Safety in Coal Mines, 2022, 53(3): 140-145.
    [2]PENG Suping, LU Yongxu. High-resolution 3D Seismic Prediction Method for Hidden Dangers of Coal and Gas Outburst Hazard[J]. Safety in Coal Mines, 2020, 51(10): 34-38.
    [3]LENG Hongwei, TAO Qiuxiang, LIU Guolin. Mining Subsidence Monitoring Based on Combination Method of Multi-Look and Full-Resolution Interferogram[J]. Safety in Coal Mines, 2020, 51(2): 124-127.
    [4]LI Wei, LI Jiliang. Application of Three-dimensional Seismic Exploration in Prediction of Coal Seam Thickness[J]. Safety in Coal Mines, 2017, 48(s1): 80-85.
    [5]QU Bao. Key Technology of Gas Control at Working Face of Thin Coal Seam[J]. Safety in Coal Mines, 2017, 48(5): 89-91.
    [6]ZHANG Feng, GAO Zhaoning, MENG Xiangrui, ZHANG Wanbin. Application of High-resolution Electrical Apparatus on Confined Water Mining Similar Simulation[J]. Safety in Coal Mines, 2014, 45(4): 145-148.
    [7]LIU Jian-gao, XIE Xiao-ping, LIU Zong-zhu. Effect Analysis on Pressure Relief for Protective Seam Mining of Thin Coal Seam in High-gas Coal Seam Group[J]. Safety in Coal Mines, 2013, 44(10): 192-195.
    [8]YU Yong, LIU Zhen-guo. Experimental Study of Using TerraSAR-X Image to Monitor Mine Area Subsidence[J]. Safety in Coal Mines, 2013, 44(4): 75-77.
    [9]ZHANG Shuan-cai. 强矿压小煤柱分层掘进巷道高强联合支护技术[J]. Safety in Coal Mines, 2012, 43(10): 86-88.
    [10]XU Jian-Bing. Practice of the Fully-mechanized Mining Technique with High-power in Thin Seam[J]. Safety in Coal Mines, 2012, 43(8): 164-165,166.
  • Cited by

    Periodical cited type(4)

    1. 王相仁. 底抽巷围岩变形特征及破坏控制技术研究. 采矿技术. 2024(04): 112-116 .
    2. 王力,刘海胜,齐晓华,马云,缑凯. 侧压系数效应下钻孔孔周力学响应特征. 煤矿机电. 2024(04): 57-61 .
    3. 翟成,唐伟. 基于底板岩巷全生命周期瓦斯治理技术研究. 工矿自动化. 2023(06): 95-103+167 .
    4. 郑文龙,杨朝,白亦欢,季鹏飞,孔祥国,杨送瑞. 极近距离煤层重复采动影响下卸压瓦斯综合治理技术研究. 中国煤炭. 2023(12): 66-71 .

    Other cited types(0)

Catalog

    Article views (60) PDF downloads (20) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return