Citation: | CHENG Fuming, HAN Zhongli, LIU Jiansheng, CAO Xiulong, HAN Xiaoming, LU Zhongliang. Finite element analysis of temporary support for top coal fast tunneling[J]. Safety in Coal Mines, 2021, 52(7): 231-236. |
[1] |
苏学贵.特厚复合顶板巷道支护结构与围岩稳定的耦合控制理论[D].太原:太原理工大学,2013.
|
[2] |
刘泉声,张华,林涛.煤矿深部岩巷围岩稳定与支护对策[J].岩石力学与工程学报,2004,23(21):3732.
LIU Quansheng, ZHANG Hua, LIN Tao. Study on stability of deep rock roadways in coal mines and their support measures[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(21): 3732.
|
[3] |
袁亮,薛俊华,刘泉声.煤矿深部岩巷围岩控制理论与支护技术[J].煤炭学报,2011,36(4):535-536.
YUAN Liang, XUE Junhua, LIU Quansheng. Surrounding rock stability control theory and support technique in deep rock roadway for coal mine[J]. Journal of China Coal Society, 2011, 36(4): 535-536.
|
[4] |
来兴平,李军伟,崔峰,等.特厚煤层相邻工作面开采覆岩运移规律研究[J].煤矿安全,2020,51(2):70.
LAI Xingping, LI Junwei, CUI Feng, et al. Study on overlying strata movement in mining adjacent working face of extra thick seam[J]. Safety in Coal Mines, 2020, 51(2): 70.
|
[5] |
李业君,孙宏权.浅谈煤矿掘进自动化新技术的应用[J].能源与节能,2012(4):9-11.
LI Yejun, SUN Hongquan. The application of coal mine boring automated new technologies[J]. Energy and Energy Conservation, 2012(4): 9-11.
|
[6] |
郑瑞霞.ZLJ-10/21型掘进机机载超前支护在障村矿的应用[J].煤,2010(1):68-69.
ZHENG Ruixia. The application of airborne advance support for ZLJ-10/21 type of roadheader in zhangcun mine[J]. Coal, 2010(1): 68-69.
|
[7] |
闰翠萍.掘进机机载临时支护装置的应用[J].山西煤炭,2011,31(4):33-34.
YAN Cuiping. Application of provisional roadheader-mounted support equipment[J]. Shanxi Coal, 2011, 31(4): 33-34.
|
[8] |
王士伟,王宇,赵成雷,等.掘进机机载临时支护机的设计与研究[J].煤矿机械,2011,32(6):52-53.
WANG Shiwei, WANG Yu, ZHAO Chenglei, et al. Design and study of roadheader-mounted provisional shoring machine[J]. Coal Mine Machinery, 2011, 32(6): 52-53.
|
[9] |
蔡璐,孟凡器,李舒驰,等.掘进机机载临时支护技术[J].煤矿机械,2013,34(6):189-191.
CAI Lu, MENG Fanqi, LI Shuchi, et al. Temporary support technology of roadheader[J]. Coal Mine Machinery, 2013, 34(6): 189-191.
|
[10] |
程富明,鲁忠良,宋松楠,等.一种综合机械化掘进内伸缩顶梁:201920882002.6[P].2019-06-13.
|
[11] |
谢苗,刘治翔,毛君,等.迈步式超前支护系统设计与支护特性研究[J].机械强度,2016,38(2):302-310.
XIE Miao, LIU Zhixiang, MAO June, et al. Design on step-type advanced supporting system and research on the supporting characteristics[J]. Journal of Mechanical Strength, 2016, 38(2): 302-310.
|
[12] |
李提建,刘新华.单元式超前液压支架偏转自复位机构及有限元分析[J].矿山机械,2020(10):8.
LI Tijian, LIU Xinhua. Deflection self-restoring mechanism of unit advanced hydraulic support and its FEA[J]. Mining & Processing Equipment, 2020(10): 8.
|
[13] |
边志雄.基于有限元计算方法对液压支架掩护梁优化设计研究[J].煤矿现代化,2020(3):142-144.
BIAN Zhixiong. Optimum design of shield beam in the hydraulic support based on finite element method[J]. Coal Mine Modernization, 2020(3): 142-144.
|
[14] |
师云龙.辛置煤矿巷道超前支护液压支架顶梁设计研究[J].煤炭与化工,2020,43(4):71-75.
SHI Yunlong, Design and research of head support beam of roadway supporting hydraulic support in Xinzhi Mine[J]. Coal and Chemical Industry, 2020, 43(4): 71-75.
|
[15] |
原长锁,张兴辉.8.8 m超大采高液压支架支护强度计算分析与应用[J].煤炭科学技术,2019,47(S2):21-26.
YUAN Changsuo, ZHANG Xinghui. Calculation analysis and application of suppurt strength of 8.8 m ultra large mining height hydraulic supports[J]. Coal Science and Technology, 2019, 47(S2): 21-26.
|
[16] |
贾根茂.采煤工作面超前支护有限元数值模拟研究[J]. 能源与节能,2018(12):184-186.
JIA Genmao. Numerical simulation of finite element method for coal mining face advanced support[J]. Energy and Energy Conversation, 2018(12): 184-186.
|
[17] |
曹渊.Ansys18.0有限元分析从入门到精通[M].北京:电子工业出版社,2018.
|
[18] |
赵罘.Solidworks2018机械设计应用大全[M].北京:人民邮电出版社,2018.
|
[19] |
李光,马凤山,刘岗,等.金川矿区深部巷道支护效果评价及参数优化研究[J].黄金科学技术,2018,26(5):605.
LI Guang, MA Fengshan, LIU Gang, et al. Study on supporting parametric optimizing design and evaluate supporting effect of deep roadway in jinchuan mine[J]. Gold Science and Technology, 2018, 26(5): 605.
|
[1] | MA Jian, HUANG Zengbo, LI Zefang. Research on on-line upgrade technology of sensors in coal mine safety monitoring system[J]. Safety in Coal Mines, 2022, 53(4): 135-139. |
[2] | CHEN Xian, JIN Yeyong, CHEN Kang. A wireless program upgrade method for mine personnel portable equipment[J]. Safety in Coal Mines, 2021, 52(3): 170-174. |
[3] | MA Long. Application of CAN Communication Technology in Coal Mine Monitoring System[J]. Safety in Coal Mines, 2019, 50(12): 106-109. |
[4] | DING Yuan, LIU Peng, ZOU Dedong, NING Liang, MAO Hongmin. Application of IAP Remote Upgrade Technology in Coal Mine Safety Monitoring Substation Based on ARM[J]. Safety in Coal Mines, 2019, 50(8): 107-110. |
[5] | HUANG Yousheng. Online Upgrading Technology for Mine-used Sensor Based on ISP Technology[J]. Safety in Coal Mines, 2019, 50(1): 140-143. |
[6] | YANG Shuo, DAI Guanglong, TANG Mingyun. Experiment Study on Mark Gas of Coal Spontaneous Combustion Based on Programmed Temperature Program[J]. Safety in Coal Mines, 2018, 49(7): 24-27,33. |
[7] | ZENG Wei. Application of Color LCD Display in Designing Mine Sensor[J]. Safety in Coal Mines, 2018, 49(1): 118-121. |
[8] | HUAI Xiaobin, YU Guisheng, WANG Risheng, HUANG Deyong, YAO Xingbo, LIANG Gaofeng. Ventilation System Optimization Program for Datai Coal Mine[J]. Safety in Coal Mines, 2015, 46(11): 121-123,127. |
[9] | XU Nai-zhong, TU Min. Program Design and Application of Three-dimensional Gas Extraction Drilling[J]. Safety in Coal Mines, 2013, 44(9): 17-19. |
[10] | ZHANG Bin, SHEN Guang-hui. ZKKG-1型主要通风机不停风倒机系统在矿井通风中的应用[J]. Safety in Coal Mines, 2012, 43(7): 127-129. |