• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
DING Hao, DU Yujing, XIE Beijing. Numerical simulation of negative pressure cavity suppression of T-pipe gas explosion[J]. Safety in Coal Mines, 2021, 52(7): 1-8.
Citation: DING Hao, DU Yujing, XIE Beijing. Numerical simulation of negative pressure cavity suppression of T-pipe gas explosion[J]. Safety in Coal Mines, 2021, 52(7): 1-8.

Numerical simulation of negative pressure cavity suppression of T-pipe gas explosion

More Information
  • Published Date: July 19, 2021
  • Underground bifurcation roadway is more common, underground roadway inhibition of explosion isolation technology can effectively contain the further expansion of gas explosion disaster. According to the characteristic of the flame staying longer at the bifurcation, the new technology of negative pressure chamber explosion suppression with the dual role of negative pressure diversion and wire mesh quenching is proposed, and using Ansys Fluent 19.0 software, numerical simulation analysis is used for the T-pipe gas explosion flame propagation characteristics under the condition of the external negative pressure chamber, and comparative analysis is carried out for the non-suppression chamber, external negative pressure chamber and the negative pressure chamber with the external filler. The results show that: when the flame passes through the bifurcation of the pipe, part of the high-temperature flame is sucked into the interior of the cavity by the effect of negative pressure cavity in the form of vortex replacement, and the rest of the high-temperature flame flows to the straight pipe through the bifurcation to continue the combustion reaction; the external negative pressure cavity can effectively attenuate the shock wave pressure in the T-pipe and reduce the chemical reaction rate, and the negative pressure cavity filled with wire mesh is more effective than the negative pressure cavity alone in exploding the flame in the T-pipe. Under the dual action of negative pressure drainage and quenching of wire mesh, when the explosive flame passes through the wire mesh, the flame will be reflected and scattered many times, and the collision rate between the free radicals involved in the gas explosion chain reaction and the pore surface of the wire mesh will increase, the number of free radical losses will increase, the flame combustion reaction strength will be weakened and the impact pressure will be reduced.
  • [1]
    张津嘉,许开立,李力,等.基于社会技术系统理论的瓦斯爆炸事故分析[J].东北大学学报(自然科学版),2018,39(5):736-740.

    ZHANG Jinjia, XU Kaili, LI Li, et al. Analysis of gas explosion accidents based on socio-technical system theory[J]. Journal of Northeastern University (Natural Science Edition), 2018, 39(5): 736-740.
    [2]
    余明高,梁栋林,徐永亮,等.荷电细水雾抑制瓦斯爆炸实验研究[J].煤炭学报,2014,39(11):2232-2238.

    YU Minggao, LIANG Donglin, XU Yongliang, et al. Experimental study on suppression of gas explosion by charged water mist[J]. Journal of China Coal Society, 2014, 39(11): 2232-2238.
    [3]
    余明高,刘梦茹,温小萍,等.超细水雾-多孔材料协同抑制瓦斯爆炸实验研究[J].煤炭学报,2019,44(5):1562-1569.

    YU Minggao, LIU Mengru, CHEN Xiaoping, et al. Synergistic inhibition of gas explosion by ultrafine water mist-porous material[J]. Journal of China Coal Society, 2019, 44(5): 1562-1569.
    [4]
    王发辉,陈卫,温小萍,等.超声细水雾抑制管内瓦斯爆炸的试验[J].安全与环境学报,2019,19(6):1971.

    WANG Fahui, CHEN Wei, CHEN Xiaoping, et al. Experiment on suppressing gas explosion in tube by ultrasonic water mist[J]. Journal of Safety and Environment, 2019, 19(6): 1971.
    [5]
    常琳.煤矿井下区域自动喷粉灭火抑爆系统研究[J].煤矿安全,2018,49(7):13-15.

    CHANG Lin. Study on regional automatic powder spraying fire extinguishing and explosion suppression system in underground coal mine[J]. Safety in Coal Mines, 2018, 49(7): 13-15.
    [6]
    张如明.泡沫陶瓷隔爆棚抑制瓦斯爆炸的机理及数值模拟研究[D].北京:中国矿业大学(北京),2012.
    [7]
    蔡周全.MGS型密封式隔爆水袋的研究[J].矿业安全与环保,2004(3):11-12.

    CAI Zhouquan. Research on MGS type sealed explosion-proof water bag[J]. Mining Safety & Environmental Protection, 2004(3): 11-12.
    [8]
    杨克,周越,周扬,等.含PPFBS超细水雾抑制甲烷爆燃的实验研究[J].安全与环境工程,2020,27(6):174-180.

    YANG Ke, ZHOU Yue, ZHOU Yang, et al. Experimental study on methane deflagration suppression by ultrafine water mist containing PPFBS[J]. Safety and Environmental Engineering, 2020, 27(6): 174-180.
    [9]
    SHAO Hao, JIANG Shuguang, LI Qinhua, et al. Analysis of vacuum chamber suppressing gas explosion[J]. International Journal of Mining Science and Technology, 2013, 23(5): 653-657.
    [10]
    解北京,王广宇,董春阳,等.T型管道不同封闭状态瓦斯爆燃火焰传播特征[J].中国安全生产科学技术,2019,15(8):19-25.

    XIE Beijing, WANG Guangyu, DONG Chunyang, et al. Propagation characteristics of gas deflagration flame in T-type pipe with different closed states[J]. Journal of Safety Science and Technology, 2019, 15(8): 19-25.
    [11]
    解北京,杜玉晶,王亮.分岔管道内瓦斯爆炸火焰传播规律实验及数值模拟[J].重庆大学学报(自然科学版),2019,42(6):69-77.

    XIE Beijing, DU Yujing, WANG Liang. Experimental and numerical simulation of gas propagation law of gas explosion flame in bifurcation pipeline[J]. Journal of Chongqing University(Natural Science Edition), 2019, 42(6): 69-77.
    [12]
    解北京,董春阳,王广宇,等.分岔处点火T型管道内瓦斯爆燃火焰传播规律研究[J].煤炭工程,2020,52(10):98-103.

    XIE Beijing, DONG Chunyang, WANG Guangyu, et al. Propagation law of gas deflagration flame in T-tube ignition at branching[J]. Coal Engineering, 2020, 52(10): 98-103.
    [13]
    HUANG F, CHEN X, CHEN P, et al. Effects of metal foam meshes on premixed methane-air flame propagation in the closed duct[J]. Journal of Loss Prevention in the Process Industries, 2017, 47: 22-28.
    [14]
    陈鹏,孙永夺.泡沫金属对甲烷/空气爆燃火焰的淬熄实验研究[J].中国安全生产科学技术,2017,13(7):37-41.

    CHEN Peng, SUN Yongduo. Experimental study on quenching effect of foam metal on methane-air deflagration flame[J]. Journal of Safety Science and Technology, 2017, 13(7): 37-41.
    [15]
    陈鹏,黄福军,何昕,等.多孔材料对管道内甲烷-空气预混火焰传播的影响[J].工业安全与环保,2016, 42(1):49-52.

    CHEN Peng, HUANG Fujun, HEXin, et al. Effects of different porous foam upon premixed methane/air flame propagation in closed ducts[J]. Industrial Safety and Dust Control, 2016, 42(1): 49-52.
    [16]
    严灼,穆朝民,袁树杰,等.空腔长宽比对瓦斯爆炸冲击波传播规律的影响[J].煤炭学报,2020,45(5):1803-1811.

    YAN Zhuo, MU Chaomin, YUAN Shujie, et al. The influence of cavity aspect ratio on the propagation law of gas explosion shock wave[J]. Journal of China Coal Society, 2020, 45(5): 1803-1811.
    [17]
    吴征艳,蒋曙光.真空腔对瓦斯爆炸抑制作用研究[M].徐州:中国矿业大学出版社,2009.
    [18]
    苗梦露,胡成洲,蒋曙光.真空腔弱面材料厚度对瓦斯抑爆性能的影响[J].矿业安全与环保,2019,46(4):26-29.

    MIAO Menglu, HU Chengzhou, JIANG Shuguang. Influence of vacuum chamber thickness of weak panel material on gas explosion suppression[J]. Mining Safety & Environmental Protection, 2019, 46(4): 26-29.
    [19]
    刘笑言.多孔材料对管道内火焰传播抑制的数值研究[D].大连:大连理工大学,2011.
    [20]
    吴征艳,蒋曙光,王兰云,等.多层丝网结构抑制瓦斯爆炸传播的数学模型[J].工业安全与环保,2006,32(12):1-3.

    WU Zhengyan, JIANG Shuguang, WANG Lanyun, et al. Mathematical model on gas explosion propagation suppressed by mululayer mesh structure[J]. Industrial Safety and Environmental Protection, 2006, 32(12): 1-3.
  • Related Articles

    [1]HUANG Hesong, REN Wei, GAO Shutong, LI Yang, YING Zhule. Design of control system for mine inspection device based on laser SLAM[J]. Safety in Coal Mines, 2024, 55(11): 210-216. DOI: 10.13347/j.cnki.mkaq.20231703
    [2]LIANG Zhanze, ZHOU Shu, CHEN Haijian. Research on collaborative control method of positioning of operators and hydraulic support for coal mine fully-mechanized mining face[J]. Safety in Coal Mines, 2024, 55(6): 217-222. DOI: 10.13347/j.cnki.mkaq.20231070
    [3]YAN Junjie, ZHANG Liangliang, WANG Yanfei. On load automatic voltage regulation technology and device of power supply system in heading face[J]. Safety in Coal Mines, 2024, 55(5): 243-250. DOI: 10.13347/j.cnki.mkaq.20231122
    [4]ZHANG Gang, PENG Tao. Rod adding device and control system of full-face electric control drilling rig[J]. Safety in Coal Mines, 2023, 54(3): 232-238.
    [5]LI Ruchuan. Wireless control device of scraper conveyor based on LoRa technology[J]. Safety in Coal Mines, 2021, 52(10): 146-149.
    [6]ZHANG Gang. Fault monitoring of electric and hydraulic control system of remote control drilling rig[J]. Safety in Coal Mines, 2021, 52(5): 154-157.
    [7]WU Shuizhang, QIN Yuzhong. Study on load imbalance system of hoist based on frequency conversion control[J]. Safety in Coal Mines, 2021, 52(1): 148-151.
    [8]ZHANG Shaohua, SONG Wanxin, GAO Jie, QIU Haisheng. A Test System of Rock and Coal Specimen Creep Property Under Gas-liquid Supercharging[J]. Safety in Coal Mines, 2020, 51(6): 146-149.
    [9]LI Haining, PAN Yuanyuan, CAO Chunling, ZHANG Jie. Study on Buffering and Characteristics of Hydraulic Support Flipper Mechanism[J]. Safety in Coal Mines, 2019, 50(1): 121-124.
    [10]LIANG Lixun, ZHUO Jun, DENG Qiang, JIANG Wenrong, LIU Anfu, CHENG Changyong, WU Jianguo. Extension and Shrinkage Device of Scraper Conveyor at Fully Mechanized Working Face of Steeply Inclined Coal Seam[J]. Safety in Coal Mines, 2015, 46(3): 100-101,104.
  • Cited by

    Periodical cited type(3)

    1. 马枫林,闫相宁,王鹏,疏礼春,李尊龙. 新一代煤矿主井提升系统设计与在线检测技术应用. 粘接. 2025(01): 121-124 .
    2. 郭长娜. 矿用激光雷达传感器无线供电及电机续流设计与测试. 传感器与微系统. 2024(08): 72-75 .
    3. 卜沁文,曲翰林,杨磊,张子涵. 矿井提升机闸瓦间隙监测装置的设计. 现代信息科技. 2022(14): 158-161 .

    Other cited types(2)

Catalog

    Article views (73) PDF downloads (53) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return