Citation: | ZHONG Zhen, ZHANG Leilin, SHI Biming, MA Yankun, ZHANG Yu, NIU Yihui. Influence of roadway cross-section mutation on the propagation of outburst shock wave[J]. Safety in Coal Mines, 2021, 52(1): 1-7. |
[1] |
袁亮.煤矿典型动力灾害风险判识及监控预警技术研究进展[J].煤炭学报,2020,45(5):1557-1566.
YUAN Liang. Research progress on risk identification, assessment, monitoring and early warning technologies of typical dynamic hazards in coal mines[J]. Journal of China Coal Industry, 2020, 45(5): 1557-1566.
|
[2] |
DU Feng, WANG Kai, GUO Yangyang, et al. The mechanism of rockburst-outburst coupling disaster considering the coal-rock combination: an experiment study[J]. Geomechanics and Engineering, 2020, 22(3): 255-264.
|
[3] |
程亮,许江,周斌,等.不同瓦斯压力对煤与瓦斯突出两相流传播规律的影响研究[J].岩土力学,2020,41(8):1-8.
CHENG Liang, XU Jiang, ZHOU Bin, et al. The influence of different gas pressures on the propagation law of coal and gas outburst two-phase flow[J]. Rock and Soil Mechanics, 2020, 41(8): 1-8.
|
[4] |
萨文科C K.井下空气冲击波[M].北京:冶金工业出版社,1979.
|
[5] |
蔺照东,李如江,陈兴,等.水平管道截面积突然扩大对冲击波传播的影响[J].煤矿安全,2014,45(5):141-147.
LIN Zhaodong, LI Rujiang, CHEN Xing, et al. The effect of suddenly extended cross-sectional area of horizontal pipe on the explosion shock wave propagation[J]. Safety in Coal Mines, 2014, 45(5): 141-147.
|
[6] |
王凯,周爱桃,魏高举,等.巷道截面变化对突出冲击波传播的影响[J].煤炭学报,2012,37(6):989-993.
WANG Kai, ZHOU Aitao, WEI Gaoju, et al. Effects of changes in roadway section on outburst shock wave propagation[J]. Journal of Coal Industry, 2012, 37(6): 989-993.
|
[7] |
王凯,王亮,杜锋,等.煤粉粒径对突出瓦斯-煤粉动力特征的影响[J].煤炭学报,2019,44(5):1369-1377.
WANG Kai, WANG Liang, DU Feng, et al. Effect of coal particle size on outstanding gas-pulverized coal dynamic characteristics[J]. Journal of China Coal Society, 2019, 44(5): 1369-1377.
|
[8] |
ZHOU Bin, XU Jiang, PENG Shoujian, et al. Experimental analysis of the dynamic effects of coal-gas outburst and a protean contraction and expansion flow model[J]. Natural Resources Research, 2020, 29(3): 1617-1637.
|
[9] |
AN Fenghua, CHENG Yuanping, WANG Liang, et al. A numerical model for outburst including the effect of adsorbed gas on coal deformation and mechanical properties[J]. Computers and Geotechnics, 2013, 54: 222.
|
[10] |
NIE Baisheng, MA Yankun, HU Shoutao, et al. Laboratory study phenomenon of coal and gas outburst based on a mid-scale simulation system[J]. Scientific Reports, 2019, 9(1): 1-12.
|
[11] |
ZHOU Aitao, ZHANG Meng, WANG Kai, et al. Airflow disturbance induced by coal mine outburst shock waves: a case study of a gas outburst disaster in China[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 128: 1-11.
|
[12] |
XUE Sheng, ZHENG Chunshan, ZHENG Xiaoliang, et al. Experimental determination of the outburst threshold value of energy strength in coal mines for mining safety[J]. Process Safety and Environment Protection, 2020, 138: 263-268.
|
[13] |
綦耀光,刘冰,张芬娜,等.煤层气井负压射流快速排煤粉装置研究[J].中国矿业大学学报,2014,43(1):72-78.
QI Yaoguang, LIU Bing, ZHANG Fenna, et al. Study of coal particles vacuuming cleanout jet pump in coalbed methane wells[J]. Journal of China University of Mining & Technology, 2014, 43(1): 72-78.
|
[14] |
WANG Kai, ZHOU Aitao, ZHANG Jianfang, et al. Real-time numerical simulations and experimental research for the propagation characteristics of shock waves and gas flow during coal and gas outburst[J]. Safety Science, 2012, 50(4): 835-841.
|
[15] |
王磊,司荣军,苗磊,等.障碍物压力反射特性对瓦斯爆炸传播影响的数值模拟研究[J].中国安全生产科学技术,2020,16(8):106-112.
WANG Lei, SI Rongjun, MIAO Lei, et al. Numerical simulation research on influence of obstacle pressure reflection characteristics on gas explosion propagation[J]. Journal of Safety Science and Technology, 2020, 16(8): 106-112.
|
[16] |
昝文涛,洪滔,董贺飞.带管道连接的空间中悬浮铝粉尘爆轰波传播数值模拟[J].含能材料,2017,25(6):106-112.
ZAN Wentao, HONG Tao, DONG Hefei. Numerical simulation of detonation wave propagation of suspended aluminum dust in space with pipe connection[J].Journal of Energetic Materials, 2017, 25(6): 106-112.
|
[17] |
杨前意,石必明,张雷林,等.拐弯角度对瓦斯爆炸诱导煤尘爆炸的影响研究[J].中国安全科学学报,2019,29(7):58-63.
YANG Qianyi, SHI Biming, ZHANG Leilin, et al. Study on the influence of turning angle on gas explosion-induced coal dust explosion[J]. Chinese Journal of Safety Science, 2019, 29(7): 58-63.
|
[18] |
Li QM, Meng H. Pulse loading shape effects on pressure-impulse diagram of an elastic-plastic, single-degree-of-freedom structural model[J]. International Journal of Mechanical Science, 2002, 44(9): 1985-1998.
|
[19] |
田诗雅,刘剑,高科.密闭管道瓦斯爆炸冲击波冲量及压力上升速率的实验研究[J].中国安全生产科学技术,2015(8):16-21.
TIAN Shiya, LIU Jian, GAO Ke. Experimental study on impulse impulse and pressure rise rate of gas explosion in closed pipelines[J]. China Safety Science and Technology, 2015(8): 16-21.
|
[20] |
李重情,穆朝民,许登科,等.空腔长度对瓦斯爆炸冲击波传播影响研究[J].采矿与安全工程学报,2018, 35(6):1293-1300.
LI Zhongqing, MU Chaomin, XU Dengke, et al. Influence of cavity length on shock wave propagation of gas explosion[J]. Journal of Mining and Safety, 2018, 35(6): 1293-1300.
|
[21] |
王新颖,王树山,卢熹,等.空中爆炸冲击波对生物目标的超压-冲量准则[J].爆炸与冲击,2018,36(1):106-111.
WANG Xinying, WANG Shushan, LU Xi, et al. Overpressure-impulse damage criterion of air shock waves on biological targets[J]. Explosion and Shock Waves, 2018, 36(1): 106-111.
|
[22] |
RUDAKOV D, SOBOLEV V. A mathematical model of gas flow during coal outburst initiation[J]. International Journal of Mining and Technology, 2019, 29(5): 791-796.
|
[1] | ZHOU Xin, ZHOU Yuncheng, JIN Shujun, LIU Xiaodan, LIU Hui, GUO Yu. Research on secondary node system architecture of coal industry Internet identity resolution[J]. Safety in Coal Mines, 2022, 53(3): 140-145. |
[2] | PENG Suping, LU Yongxu. High-resolution 3D Seismic Prediction Method for Hidden Dangers of Coal and Gas Outburst Hazard[J]. Safety in Coal Mines, 2020, 51(10): 34-38. |
[3] | LENG Hongwei, TAO Qiuxiang, LIU Guolin. Mining Subsidence Monitoring Based on Combination Method of Multi-Look and Full-Resolution Interferogram[J]. Safety in Coal Mines, 2020, 51(2): 124-127. |
[4] | LI Wei, LI Jiliang. Application of Three-dimensional Seismic Exploration in Prediction of Coal Seam Thickness[J]. Safety in Coal Mines, 2017, 48(s1): 80-85. |
[5] | QU Bao. Key Technology of Gas Control at Working Face of Thin Coal Seam[J]. Safety in Coal Mines, 2017, 48(5): 89-91. |
[6] | ZHANG Feng, GAO Zhaoning, MENG Xiangrui, ZHANG Wanbin. Application of High-resolution Electrical Apparatus on Confined Water Mining Similar Simulation[J]. Safety in Coal Mines, 2014, 45(4): 145-148. |
[7] | LIU Jian-gao, XIE Xiao-ping, LIU Zong-zhu. Effect Analysis on Pressure Relief for Protective Seam Mining of Thin Coal Seam in High-gas Coal Seam Group[J]. Safety in Coal Mines, 2013, 44(10): 192-195. |
[8] | YU Yong, LIU Zhen-guo. Experimental Study of Using TerraSAR-X Image to Monitor Mine Area Subsidence[J]. Safety in Coal Mines, 2013, 44(4): 75-77. |
[9] | ZHANG Shuan-cai. 强矿压小煤柱分层掘进巷道高强联合支护技术[J]. Safety in Coal Mines, 2012, 43(10): 86-88. |
[10] | XU Jian-Bing. Practice of the Fully-mechanized Mining Technique with High-power in Thin Seam[J]. Safety in Coal Mines, 2012, 43(8): 164-165,166. |
1. |
贺斌,晏豪. 基于地质统计学反演的薄煤层识别研究. 中国煤炭. 2024(S1): 336-342 .
![]() | |
2. |
单蕊. HSL煤矿中区煤层厚度预测及其变化地质分析. 陕西煤炭. 2023(04): 124-128 .
![]() | |
3. |
张昭,邱兆泰,田锦瑞,牛清华,张晓盼,张灯亮,曹秀森,台立勋,段刚,耿晓兵. 基于地震多属性技术解释煤层冲刷变薄. 中国煤炭地质. 2022(11): 63-68 .
![]() |