• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
LI Xiaoliang, GUO Weiyao, YIN Yanchun, XIAO Yaxun, TANG Xingxue. Simulation analysis of buffer energy absorption effect of pressure-relief coal[J]. Safety in Coal Mines, 2021, 52(2): 201-206.
Citation: LI Xiaoliang, GUO Weiyao, YIN Yanchun, XIAO Yaxun, TANG Xingxue. Simulation analysis of buffer energy absorption effect of pressure-relief coal[J]. Safety in Coal Mines, 2021, 52(2): 201-206.

Simulation analysis of buffer energy absorption effect of pressure-relief coal

More Information
  • Published Date: February 19, 2021
  • In order to study the buffering and energy absorption effect of pressure-relief coal on impact energy, the local model of the surrounding rock of the roadway was established by the particle flow software. We analyzed the impact energy buffering effect of the intact coal body and the pressure-relief coal body, and buffer energy absorption effect of pressure-relief coal with different damage degrees and broken depths, changes in the force of the supporting body under the conditions of different damage degrees and fracture depths. The results show: compared with the intact coal body, the impact energy consumption of the pressure-relief coal body with a damage degree of 40% is twice that aof the intact coal body, and the energy absorption effect of the pressure-relief coal body is much higher than that of the intact coal body; with the increase of the damage degree or crushing depth of the pressure-relief coal body, the force of the support body under the static load increases, but the force of the support body decreases under the impact action, the buffer effect of the strong pressure-relief coal body on the impact energy is more obvious, but the support strength under static load increases accordingly; when the damage degree of the pressure relief coal body is 40% and the crushing depth is 3 meters, the pressure-relief coal body can achieve an ideal buffering energy absorption effect.
  • [1]
    姜耀东, 潘一山, 姜福兴, 等.我国煤炭开采中的冲击地压机理和防治[J].煤炭学报,2014,39(2):205-213.

    JIANG Yaodong, PAN Yishan, JIANG Fuxing, et al. State of the art review on mechanism and prevention of coal bumps in China[J]. Journal of China Coal Society, 2014, 39(2): 205-213.
    [2]
    姜耀东.煤岩冲击失稳的机理和实验研究[M].北京:科学出版社,2009:8-24.
    [3]
    潘一山,李忠华,章梦涛.我国冲击地压分布、类型、机理及防治研究[J].岩石力学与工程学报,2003,22(11):1844-1851.

    PAN Yishan, LI Zhonghua, ZHANG Mengtao. Distribution, type, mechanism, and prevention of rockbrust in china[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1844-1851.
    [4]
    何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报, 2005,24(16):2803-2813.

    HE Manchao, XIE Heping, PENG Suping, et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2803-2813.
    [5]
    赵同彬,郭伟耀,谭云亮,等.煤厚变异区开采冲击地压发生的力学机制[J].煤炭学报,2016,41(7):1659.

    ZHAO Tongbin, GUO Weiyao, TAN Yunliang, et al. Mechanics mechanism of rockburst caused by mining in variable region of coal thickness[J]. Journal of China Coal Society, 2016, 41(7): 1659-1666.
    [6]
    COOK NG W, HOEK E, PRETORIUS J P G, et al. Rock mechanics applied to the study of rockbursts[J]. Journal of the South African Institute of Mining and Metallurgy, 1966, 66: 435-528.
    [7]
    PETUKHOV I M, LINKOV A M. The theory of rockbursts and outburst[M]. Moscow: Nedra, 1983.
    [8]
    李玉生.冲击地压机理及其初步应用[J].中国矿业大学学报,1985(3):42-48.

    LI Yusheng. Rockburst mechanism and its preliminary application[J]. Journal of China Institution of Mining and Technology, 1985(3): 42-48.
    [9]
    窦林名,陆菜平,牟宗龙,等.冲击矿压的强度弱化减冲理论及其应用[J].煤炭学报,2005,30(6):690.

    DOU Linming, LU Caiping, MU Zonglong, et al. The theory of intensity weakening for rockburst and its application[J]. Journal of China Coal Society, 2005, 30(6): 690.
    [10]
    于正兴,姜福兴,桂兵,张安元.防治冲击地压的应力三向化理论研究及应用[J].煤炭科学技术,2011, 39(7):1-4,52.

    YU Zhengxing, JIANG Fuxing, GUI Bing, et al. Study and application of stress three-dimensional theory to prevention and control of mine pressure bumping[J]. Coal Science and Technology, 2011, 39(7): 1-4,52.
    [11]
    周立春,魏全德,杜建鹏.煤层钻孔“双低”防冲机理及应用[J].煤矿安全,2014,45(9):158-161.

    ZHOU Lichun, WEI Quande, DU Janpeng. “Double low” rock burst prevention mechanism for drillhole and its application[J]. Journal of Safety in Coal Mines, 2014, 45(09):158-161.
    [12]
    谭云亮,郭伟耀,赵同彬,等.深部煤巷帮部失稳诱冲机理及“卸-固”协同控制研究[J].煤炭学报,2020,45(1):66-81.

    TAN Yunliang, GUO Weiyao, ZHAO Tongbin, et al. Coal rib burst mechanism in deep roadway and “stress relief-support reinforcement” synergetic control and prevention[J]. Journal of China Coal Society, 2020, 45(1): 66-81.
    [13]
    谭云亮,郭伟耀,辛恒奇,等.煤矿深部开采冲击地压监测解危关键技术研究[J].煤炭学报,2019,44(1):160-172.

    TAN Yunliang, GUO Weiyao, XIN Hengqi, et al. Key technology of rock burst monitoring and control in deep coal mining[J]. Journal of China Coal Society, 2019, 44(1): 160-172.
    [14]
    代志旭,刘强.千米级深井上保护层开采下伏煤层卸压效果研究[J].煤矿安全,2019,50(4):12-15.

    DAI Zhixu, LIU Qiang. Study on pressure unloading effect of lower coal seam under upper protective layer in a kilometer deep well[J]. Safety of Coal Mine, 2019, 50(4): 12-15.
    [15]
    刘红岗,徐金海.煤巷钻孔卸压机理的数值模拟与应用[J].煤炭科技,2003(4):37-38.

    LIU Honggang, XU Jinhai. Numerical simulation and application of pressure relief mechanism of coal roadway drilling[J]. Coal Science & Technology Magazine, 2003(4): 37-38.
    [16]
    田昭军,王永,冯美华.冲击地压煤层爆破卸压效果分析[J].能源与环保,2018,40(9):58-62.

    TIAN Zhaojun, WANG Yong, FENG Meihua. Effect analysis of pressure relief using blasting of coal seam with rock burst danger[J]. China Energy and Environmental Protection, 2018, 40(9): 58-62.
    [17]
    何岗,杨建业.扇形钻孔卸压冲击地压防治实践[J].煤炭科技,2018(3):74-75.

    HE Gang, YANG Jianye. Practice of rock burst prevention of fan-shaped boreholes pressure relief[J]. Coal Science & Technology Magazine, 2018(3):74-75.
    [18]
    薛伟超.深部厚煤层综采工作面冲击地压防治技术[J].煤矿安全,2017,48(1):81-83.

    XUE Weichao. Rock burst prevention and control technology of fully mechanized coal mining face for deep thick seam[J]. Safety in Coal Mines, 2017, 48(1): 81-83.
    [19]
    李跃文,刘赛,曹安业,等.卸压钻孔对巷道煤体卸压效应的数值分析及应用[J].煤炭工程,2016,48(11):50-53.

    LI Yaowen, LIU Sai, CAO Anye, et al. Numerical analysis and application of coal pressure relief effect with drillings in roadway[J]. Coal Engineering, 2016, 48(11): 50-53.
    [20]
    刘华博,赵毅鑫,姜耀东,等.综放工作面煤层大直径钻孔卸压防灾技术[J].煤矿安全,2018,49(5):79.

    LIU Huabo, ZHAO Yixin, JIANG Yaodong, et al. Pressure relief and disaster prevention technology by large diameter borehole in fully mechanized caving face[J]. Safety in Coal Mines, 2018, 49(5): 79.
  • Related Articles

    [1]LIU Jiajia, YANG Ming, WEI Chunrong. Numerical Simulation of Optimization for Drainage Negative Pressure of High Level Suction Roadway[J]. Safety in Coal Mines, 2018, 49(2): 35-38,42.
    [2]ZHANG Jiayong, CUI Xiao, ZHOU Fengzeng, WANG Kai, XU Shen. Numerical Simulation on Crack Radius of Coal Seam Drilling by Static Blasting[J]. Safety in Coal Mines, 2017, 48(12): 146-149.
    [3]CAI Peipei, ZHAO Yaojiang, GUO Jinyan. Numerical Simulation Study on Gas Drainage in Extra Long Borehole Based on COMSOL Multiphysics[J]. Safety in Coal Mines, 2017, 48(8): 132-135.
    [4]DONG Hongjuan, ZHANG Jinshan, LI Wenzhe, WANG Yan. Research on Time Varying Laws of Extraction Radius for Bedding Directional 1 000 m Long Drilling[J]. Safety in Coal Mines, 2017, 48(3): 9-12.
    [5]LIU Li, LI Shugang, LIU Chao, XING Lijie. Drilling Holes Spacing Optimization for Breaking Roof Blasting Pressure Releasing in Deep Hole of Jixian Coal Mine[J]. Safety in Coal Mines, 2015, 46(10): 137-139.
    [6]LIU Feifei, HUANG Yuanyue, XU Quan, LI Shuai, ZHAO Pengtao, QIN Zuoya, HUANG Bing. Numerical Simulation of Seepage-heat Similarity for Effective Radius of Drilling Gas Drainage[J]. Safety in Coal Mines, 2014, 45(12): 1-5.
    [7]LIU Ting, LIN Baiquan, ZOU Quanle, SHEN Chunming, ZHANG Zhen, YANG Wei. Measurement of Effective Drainage Radius Based on Primitive Gas Content and Pressure for Slotted Drilling[J]. Safety in Coal Mines, 2014, 45(8): 8-11.
    [8]WU Lei, DAI Guang-long, YANG Zhi-lei. Experimental Study on Effective Extraction Radius for Bedding Hole[J]. Safety in Coal Mines, 2013, 44(5): 4-6.
    [9]WANG Zhao-feng, LI Yan-tao, XIA Hui-hui, TAN Rong-hui. Numerical Simulation on Effective Drainage Radius of Drill Hole Along Coal Seam Based on COMSOL[J]. Safety in Coal Mines, 2012, 43(10): 4-6.
    [10]NING Zhi-yong, LI Sheng. Numerical Simulation on Gas Extraction Parameters Optimization in Soft and Low Permeability Coal Seam of Wuyang Coal Mine[J]. Safety in Coal Mines, 2012, 43(10): 1-3.
  • Cited by

    Periodical cited type(2)

    1. 李龙龙,李雨成,刁友鹏,任建业. 声波速度反演呼吸器氢氧化钙有效性研究. 太原理工大学学报. 2023(06): 1076-1082 .
    2. 夏海燕. 水泥中氧化钙含量检测终点的返色现象及消除途径探究. 江西化工. 2021(06): 47-49 .

    Other cited types(0)

Catalog

    Article views (37) PDF downloads (1) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return