• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
ZHU Keren, DENG Chuan, LEI Ruide. Influence of grout-filled flaws on strength properties and fracture modes of coal petrography[J]. Safety in Coal Mines, 2021, 52(2): 63-70.
Citation: ZHU Keren, DENG Chuan, LEI Ruide. Influence of grout-filled flaws on strength properties and fracture modes of coal petrography[J]. Safety in Coal Mines, 2021, 52(2): 63-70.

Influence of grout-filled flaws on strength properties and fracture modes of coal petrography

More Information
  • Published Date: February 19, 2021
  • In order to study the influence of grout-filled flaws on strength and fracture modes of coal petrography, based on the test results of indoor cracked rocks, the fractured rock containing different geometric arrangements were investigated experimentally using the parallel particle flow model. The results show that the peak stress and peak strain of cracked sandstone decrease first and then increase with the increase of ligament angle. In addition, with the increase of the flaw inclination angle, the strain energy and slip friction energy of the fractured rock increase to some extent under the same ligament angle. The failure mode of the specimen mainly includes tensile failure, shear failure and tensile-shear mixture failure.
  • [1]
    Hoek E, Martin CD. Fracture initiation and propagation in intact rock-A review[J]. Journal of Rock Mechanics & Geotechnical Engineering, 2014(6): 287-300.
    [2]
    Horii H, Nemat-Nasser S. Compression-induced microcrack growth in brittle solids: axial splitting and shear failure[J]. Journal of Geophysical Research, 1985, 90:3105-3125.
    [3]
    Guo WY, Tan YL, Yu FH, et al. Mechanical behavior of rock-coal-rock specimens with different coal thicknesses[J]. Geomechanics & Engineering, 2018, 15(4): 1017-1027.
    [4]
    Zhao Z, Zhou D. Mechanical properties and failure modes of rock samples with grout-infilled flaws: A particle mechanics modeling[J]. Journal of Natural Gas Science & Engineering, 2016, 34: 702-715.
    [5]
    Guo WY, Gu QH, Tan YL, et al. Case studies of rock bursts in tectonic areas with facies change[J]. Energies, 2019, 12: 1330-1340.
    [6]
    Wong L N Y, Einstein H H. Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression[J]. International Journal of Rock Mechanics & Mining Sciences, 2009, 46: 239.
    [7]
    Yang S Q, Jing H W. Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression[J]. International Journal of Fracture, 2011, 168: 227-250.
    [8]
    王桂林,梁再勇,张亮,等. Z型裂隙对砂岩强度和破裂行为影响机制研究[J].岩土力学,2018, 39(S2):389-397.

    WANG Guilin, LIANG Zaiyong, ZHANG Liang, et al. Study of influence mechanism of Z-type fissure on sandstone strength and fracture behavior[J]. Rock and Soil Mechanics, 2018, 39(S2): 389-397.
    [9]
    王笑然,王恩元,刘晓斐,等.裂隙砂岩裂纹扩展声发射响应及速率效应研究[J].岩石力学与工程学报, 2018,37(6):1447-1458.

    WANG Xiaoran, WANG Enyuan, LIU Xiaofei, et al. Macro-crack propagation process and corresponding AE behaviors of fractured sandstone under different loading rates[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1447-1458.
    [10]
    单仁亮,白瑶,孙鹏飞,等.裂隙红砂岩冻胀力特性试验研究[J].煤炭学报,2019,44(6):1742-1752.

    SHAN Renliang, BAI Yao, SUN Pengfei, et al. Experimental study on frost heaving pressure properties in fractured red sandstone[J]. Journal of China Coal Society, 2019, 44(6): 1742-1752.
    [11]
    赵国彦,李振阳,吴浩,等.含非贯通裂隙砂岩的动力破坏特性研究[J].岩土力学,2019, 40(S1):74-81.

    ZHAO Guoyan, LI Zhenyang, WU Hao, et al. Dynamic failure characteristics of sandstone with non-penetrating cracks[J]. Rock and Soil Mechanics, 2019, 44(6): 1742-1752.
    [12]
    郭寿松.单裂隙砂岩破坏特征和破裂演化规律试验[J].煤矿安全,2019,50(7):56-60.

    GUO Shousong. Experimental study on failure characteristics and crack evolution lawsofsandstone containing pre-existing single crack[J]. Safety in Coal Mines, 2019, 50(7): 56-60.
    [13]
    Zhang X P, Wong L N Y. Cracking processes in rock-like material containing a single flaw under uniaxial compression: a numerical study based on parallel bonded-particle model approach[J]. Rock Mechanics & Rock Engineering, 2012, 45: 711-737.
    [14]
    王桂林,张亮,许明,等.单轴压缩下非贯通节理岩体损伤破坏能量演化机制研究[J].岩土工程学报,2019,41(4):640.

    WANG Guilin, ZHANG Liang, XU Ming,et al. Energy damage evolution mechanism of non-across jointed rock mass under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 640.
    [15]
    Zhu QQ, Li DY, Han ZY, et al. Mechanical properties and fracture evolution of sandstone specimens containing different inclusions under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 115: 33-47.
    [16]
    Du MR, Jing HW, Su HJ, et al. Strength and failure characteristics of sandstone containing two circular holes filled with two types of inclusions under uniaxial compression[J]. Journal of Central South University, 2017, 24: 2487-2495.
    [17]
    Park CH, Bobet A. Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression[J]. Engineering Fracture Mechanics, 2010, 77: 2727-2748.
    [18]
    Zhuang XY, Chun JW, Zhu HH. A comparative study on unfilled and filled crack propagation for rock-like brittle material[J]. Theoretical Applied Fracture Mechanics, 2014, 72: 110-120.
    [19]
    Janeiro RP, Einstein HH. Experimental study of the cracking behavior of specimens containing inclusions(under uniaxial compression)[J]. International Journal of Fracture, 2010, 164: 83-102.
    [20]
    Cho N, Martin CD, Sego DC. A clumped particle model for rock[J]. International Journal of Rock Mechanics & Mining Sciences, 2007, 44(7): 997-1010.
    [21]
    Huang YH, Yang SQ, Tian WL. Crack coalescence behavior of sandstone specimen containing two pre-existing flaws under different confining pressures[J]. Theoretical and Applied Fracture Mechanics 2019, 99: 118-130.
  • Related Articles

    [1]MA Haochen, RONG Chuanxin, LONG Wei, HUANG Shiqing. Study on the influence law of hydration heat of concrete in outer wall of frozen well on frozen wall MA Haochen, RONG Chuanxin, LONG Wei, HUANG Shiqing[J]. Safety in Coal Mines, 2022, 53(6): 218-226.
    [2]FU Wenjun. Temperature Monitoring Technology of Coal Mine High Voltage Cable Based on InfraredNon-contact Cable Type[J]. Safety in Coal Mines, 2020, 51(11): 106-108,112.
    [3]LIU Mingqi. Design of Temperature Monitoring System for Low-voltage Distribution Cabinet for Mine[J]. Safety in Coal Mines, 2019, 50(9): 106-108.
    [4]MAO Huiqiong, CHEN Shihai, ZHANG Qingxue, WANG Xianwei. Wireless Temperature Monitoring System for Coalfield Fire Area[J]. Safety in Coal Mines, 2016, 47(11): 97-99,103.
    [5]WANG Lei, WANG Jianping, HONG Boqian. Evaluation Method of Safety Monitoring for Freezing Shaft Lining[J]. Safety in Coal Mines, 2016, 47(9): 42-45.
    [6]ZHANG Nan. Fiber Bragg Grating Load Distribution Dynamic Monitoring Technology for Underground Bolt Based on Temperature Compensation[J]. Safety in Coal Mines, 2016, 47(4): 146-149.
    [7]LI Borong, YANG Gengshe, XI Jiami, CHEN Xinnian. Pressure Field and Tempreture Field Monitoring of Shaft Wall by Freezing Shaft Sinking in Rich Water and Soft Rock[J]. Safety in Coal Mines, 2015, 46(5): 58-62.
    [8]LIANG Bo, XI Jiami, CHEN Xinnian, YANG Gengshe, LI Borong, QU Yonglong. Monitoring and Analysis on Shaft Freezing Temperature Field of Cretaceous Water-rich Bedrock in Xinzhuang Coal Mine[J]. Safety in Coal Mines, 2014, 45(8): 192-195.
    [9]YE Jin-jiao. Multi-point Temperature Monitoring of Coal Belt Conveyor Based on ZigBee[J]. Safety in Coal Mines, 2012, 43(5): 67-69.
    [10]LIU Xiang-ju. Coal Mine Temperature Monitoring System Based on CC2430[J]. Safety in Coal Mines, 2012, 43(1): 51-54.
  • Cited by

    Periodical cited type(6)

    1. 王忠宾,司垒,魏东,戴剑博,顾进恒,邹筱瑜,张聪,闫海峰,谭超. 煤矿防冲钻孔机器人全自主钻进系统关键技术. 煤炭学报. 2024(02): 1240-1258 .
    2. 闫保永,曹柳,王国震. 煤矿井下声波测量系统降噪技术研究. 矿山机械. 2024(09): 10-17 .
    3. 郝世俊,褚志伟,李泉新,方俊,陈龙,刘建林. 煤矿井下近钻头随钻测量技术研究现状和发展趋势. 煤田地质与勘探. 2023(09): 10-19 .
    4. 范强,张幼振,陈龙,陈果,杨冬冬. 煤矿井下定向钻探数字化平台技术研究. 煤矿安全. 2023(10): 212-218 . 本站查看
    5. 梁磊,纪海源. 煤矿井下定向钻进过程中测量关键技术研究. 能源与环保. 2022(06): 114-118 .
    6. 折志强. 煤矿井下千米随钻测量定向钻进关键技术. 内蒙古煤炭经济. 2021(24): 26-28 .

    Other cited types(1)

Catalog

    Article views (31) PDF downloads (0) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return