• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
WU Yongping, LIU Wanghai, XIE Panshi, TIAN Shuangqi. Stress Evolution and Roof Breaking Characteristics of Surrounding Rock in Oblique Longwall Mining Area of Steeply Dipping Seam[J]. Safety in Coal Mines, 2020, 51(9): 222-227.
Citation: WU Yongping, LIU Wanghai, XIE Panshi, TIAN Shuangqi. Stress Evolution and Roof Breaking Characteristics of Surrounding Rock in Oblique Longwall Mining Area of Steeply Dipping Seam[J]. Safety in Coal Mines, 2020, 51(9): 222-227.

Stress Evolution and Roof Breaking Characteristics of Surrounding Rock in Oblique Longwall Mining Area of Steeply Dipping Seam

More Information
  • Published Date: September 19, 2020
  • Taking 3132 steeply dipping coal fully-mechanized oblique longwall mining working face in Lyushuidong Coal Mine as the engineering background, the aricle studies the stress evolution and roof fracture and the spatial scale characteristics of the steeply dipping coal oblique mining area. The results show that the surrounding rock of the steeply dipping coal oblique stope has stress arch characteristics, and the symmetry stress arch along the strike direction is asymmetric stress arch in the decline direction. When the working face is advanced, the main roof stress evolution form is wedge shape→inverted peach shape→inverted trapezoidal and other main forms; the main roof rock layer is tensile and compressive failure in the upper middle part, and the lower part is compressive failure. The peak of the supporting stress of the pseudo stope is slightly larger than the peak of the true inclined stope. As the number of excavation increases, the peak value of the supporting stress gradually increases to produce a cumulative effect. The slope of the pseudo stope is affected by the roof rupture, the “sequence” of the collapse and the “negative constraint effect” of the gangue filling, which is easy to form a large and small asymmetric stope space scale.
  • [1]
    伍永平,刘孔智,贠东风,等.大倾角煤层安全高效开采技术研究进展[J].煤炭学报,2014,39(8):1611.
    [2]
    伍永平.大倾角煤层开采“顶板-支护-底板”系统稳定性及动力学模型[J].煤炭学报,2004,29(5):527.
    [3]
    解盘石,伍永平,罗生虎,等.大倾角大采高采场倾向梯阶结构演化及稳定性分析[J].采矿与安全工程学报,2018,35(5):953-959.
    [4]
    尹光志,鲜学福,代高飞,等.大倾角煤层开采岩移基本规律的研究[J].岩土工程学报,2001(4):450-453.
    [5]
    孟祥瑞,赵启峰,刘庆林.大倾角煤层综采面围岩控制机理及回采技术[J].煤炭科学技术,2007(8):25-28.
    [6]
    杨科,池小楼,刘帅.大倾角煤层综采工作面液压支架失稳机理与控制[J].煤炭学报,2018,43(7):1821.
    [7]
    罗生虎,伍永平,解盘石,等.大倾角大采高综采工作面支架受载与失稳特征分析[J].煤炭学报,2018,43(12):3320-3328.
    [8]
    罗生虎,伍永平,王红伟,等.大倾角煤层长壁开采底板非对称破坏形态与滑移特征[J].煤炭学报,2018, 43(8):69-75.
    [9]
    伍永平,郭峰.大倾角大采高工作面底板破坏滑移特征分析[J].煤炭技术,2014,33(9):160-162.
    [10]
    王红伟,伍永平,解盘石,等.大倾角煤层开采“关键域”岩体结构稳定性分析[J].采矿与安全工程学报, 2017,34(2):287-294.
    [11]
    王红伟,伍永平,解盘石.大倾角煤层开采覆岩应力场形成及演化特征[J].辽宁工程技术大学学报(自然科学版),2013(8):1022-1026.
    [12]
    赵鲲鹏,张华磊,涂敏.大倾角综放采场围岩应力演化规律研究[J].煤矿开采,2016,21(3):11-14.
    [13]
    贠东风,伍永平.大倾角煤层综采工作面调伪仰斜原理与方法[J].辽宁工程技术大学学报(自然科学版),2001(2):152-155.
    [14]
    贠东风,任奉天,伍永平,等.大倾角软煤大采高综采工作面伪斜布置[J].煤矿安全,2018,49(11):145.
    [15]
    潘瑞凯,曹树刚,沈大富,等.俯伪斜开采采场顶板破断模型与工程实测研究[J].采矿与安全工程学报, 2017,34(4):637-643.
    [16]
    杨胜利,赵斌,李良晖.急倾斜煤层伪俯斜走向长壁工作面煤壁破坏机理[J].煤炭学报,2019,44(2):367-376.
    [17]
    肖家平,刘帅,池小楼.近距离采空区下大倾角俯伪斜工作面矿压显现特征研究[J].煤炭工程,2019,51(6):93-98.
    [18]
    黄清锋,康书生,何兴义,等.大倾角俯斜综放开采覆岩运动规律研究[J].煤炭技术,2019,38(5):39-43.
    [19]
    赵轲.厚煤层大采高工作面大倾角俯采支架稳定性与控制技术研究[J].煤炭与化工,2019,42(1):43.
    [20]
    杨伟,杨宇,王晓,等.大倾角煤层伪斜工作面支架稳定性分析[J].煤炭工程,2011(6):88-90.
  • Related Articles

    [1]SHANG Wenzheng, LIU Zhigang, YOU Wuchao, YUAN Jianbo. Research on support design and surrounding rocks control in deep thick coal seam mining roadway[J]. Safety in Coal Mines, 2024, 55(9): 139-148. DOI: 10.13347/j.cnki.mkaq.20230824
    [2]REN Shuai, LU Dechao, LUO Yong, XIAO Diancai, KANG Zhipeng, TONG Zheng. Study on creep instability mechanism and key control technology of surrounding rock in deep soft rock roadway[J]. Safety in Coal Mines, 2024, 55(3): 190-198. DOI: 10.13347/j.cnki.mkaq.20222289
    [3]LYU Jianguang, ZHANG Huiyou, GU Wei, XU Dalong. Surrounding rock control technology of crossing abandoned roadway intersection of compound mining area[J]. Safety in Coal Mines, 2024, 55(1): 176-184. DOI: 10.13347/j.cnki.mkaq.20230931
    [4]BAI Zhiyun, XU Qingyun, WANG Aiguo, ZHAO Tao. Study on stability and control of surrounding rock of roadway with large section in thick coal seam[J]. Safety in Coal Mines, 2022, 53(6): 178-186.
    [5]WAN Feng, WANG Zhanling, ZHANG Hongqing, FAN Mingjian, YAN Shouqing, GUO Gangye. Research and application of pre-stressed continuous surrounding rock control technology[J]. Safety in Coal Mines, 2021, 52(11): 104-109.
    [6]DENG Xiaogang, LUAN Hengjie, LIU Jianrong. Numerical study on surrounding rock control effect of gob-side entry retaining by roof cutting and pressure relief[J]. Safety in Coal Mines, 2021, 52(9): 239-244.
    [7]DENG Junyu, WANG Zijun. Control Technique of Surrounding Rock of Intersection Roadway Under Deep Buried Complex Stress[J]. Safety in Coal Mines, 2019, 50(12): 81-84.
    [8]ZHU Ying, HAO Zhen, ZHANG Haihong. Controlling Technology of Surrounding Rock in Soft Rock Roadway[J]. Safety in Coal Mines, 2016, 47(7): 76-79.
    [9]DU Xianjie, SU Xuegui, YUAN Honghu, LI Benkui, ZHANG Suo, YANG Zongyi. Control of Surrounding Rock Stability Based on Failure Characteristics Analysis of Roadway Shoulders[J]. Safety in Coal Mines, 2015, 46(11): 62-65.
    [10]CHEN Jie, JING Sheng-guo, WANG Bo, SONG Li-yong. Surrounding Rock Instability of Mining Induced Roadway and Control Technology[J]. Safety in Coal Mines, 2013, 44(11): 130-133.
  • Cited by

    Periodical cited type(4)

    1. 王志国,方博然,吴仪慧,张守印,石浩淏. 基于三维激光扫描的采场边壁粗糙度特性分析. 有色金属设计. 2024(04): 19-25+30 .
    2. 黄丹,肖子龙,汤文,金清平. 不同开度节理大理岩破裂过程与断裂面形貌特征研究. 工程地质学报. 2024(06): 2239-2249 .
    3. 王威. 基于数字技术的三维动画图像纹理实时渲染系统设计. 现代电子技术. 2022(04): 78-82 .
    4. 甘磊,马洪影,沈振中. 混凝土粗糙面形貌特征参数与节理粗糙度系数关系研究. 土木工程学报. 2022(07): 57-65 .

    Other cited types(0)

Catalog

    Article views (28) PDF downloads (0) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return