• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
WANG Haidong, LU Ligang, SUN Xin, YANG Tao. Study on Gas Occurrence Law in Stress Concentration Zone of Remaining Coal Pillars in Close Protection[J]. Safety in Coal Mines, 2020, 51(8): 199-205.
Citation: WANG Haidong, LU Ligang, SUN Xin, YANG Tao. Study on Gas Occurrence Law in Stress Concentration Zone of Remaining Coal Pillars in Close Protection[J]. Safety in Coal Mines, 2020, 51(8): 199-205.

Study on Gas Occurrence Law in Stress Concentration Zone of Remaining Coal Pillars in Close Protection

More Information
  • Published Date: August 19, 2020
  • According to the law of mine pressure appearance of No.9 coal seam 9106 working face passing through No.8 coal seam in Xinjing Mine of Yangmei Group, the combination of theoretical analysis, numerical simulation and field measurement is adopted, firstly, the mechanical model of protective layer is established, the mechanical calculation formula of protective layer is obtained; secondly, through FLAC3D numerical simulation, the stress distribution rule and influence range of coal pillar pressure area are revealed; finally, the field monitoring verification is carried out. The results show that: the vertical stress state at the completion of protective layer mining is centered on the residual coal pillar, spreads to both sides in sequence; the further away from the remaining pillar, the wider its spread; the influence range of the remaining coal pillar is 33 m, the maximum stress value is 38.6 MPa; through actual measurement of the gas drilling cutting index in stress concentration zone and the pressure relief zone, the result shows that cuttings desorption index K1 value, amount of cuttings S value and stress distribution state have good correlation, at the same time, it is concluded that the coal seam gas can be fully released under the condition of close protection seam mining.
  • [1]
    岳帅帅,谢生荣,陈冬冬,等.15 m特厚煤层综放高强度开采窄煤柱围岩控制研究[J].采矿与安全工程学报,2017,34(5):905-913.
    [2]
    王海锋,程远平,吴冬梅,等.近距离上保护层开采工作面瓦斯涌出及瓦斯抽采参数优化[J].煤炭学报,2010,35(4):590-594.
    [3]
    郭怀广.上保护层开采防突效果区域时空演化规律研究[J].煤矿安全,2019,50(4):186-190.
    [4]
    白庆升,屠世浩,王方田,等.浅埋近距离房式煤柱下采动应力演化及致灾机制[J].岩石力学与工程学报,2012,31(S2):3772-3778.
    [5]
    国家煤矿安全监察局.防治煤与瓦斯突出规定[M].北京:煤炭工业出版社,2009.
    [6]
    高峰,许爱斌,周福宝.保护层开采过程中煤岩损伤与瓦斯渗透性的变化研究[J].煤炭学报,2011,36(12):1979-1984.
    [7]
    姜鹏飞,康红普,张剑,等.近距煤层群开采在不同宽度煤柱中的传力机制[J].采矿与安全工程学报,2011,28(3):345-349.
    [8]
    何富连,许磊,吴焕凯,等.大断面切眼顶板偏应力运移及围岩稳定[J].岩土工程学报,2014,36(6):1122.
    [9]
    都锋.上保护层开采下伏煤岩卸压带瓦斯抽采优化设计[J].煤矿安全,2019,50(2):140-143.
    [10]
    于斌,刘长友,杨敬轩,等.大同矿区双系煤层开采煤柱影响下的强矿压显现机理[J].煤炭学报,2014,39(1):40-46.
    [11]
    张磊.保护层开采保护范围的确定及影响因素分析[J].煤矿安全,2019,50(7):205-210.
    [12]
    王存文,姜福兴,王平,等.煤柱诱发冲击地压的微震事件分布特征与力学机理[J].煤炭学报,2009,34(9):1169-1173.
    [13]
    姜福兴,王玉霄,李明,等.上保护层煤柱引发被保护层冲击机理研究[J].岩土工程学报,2017,39(9):1689-1696.
    [14]
    张科学,张永杰,马振乾,等.沿空掘巷窄煤柱宽度确定[J].采矿与安全工程学报,2015,32(3):446-452.
    [15]
    代志旭,刘强.千米级深井上保护层开采下伏煤层卸压效果研究[J].煤矿安全,2019,50(4):6-9.
    [16]
    孟战成.近距离上保护层开采保护范围及
  • Related Articles

    [1]WANG Liancong. Quantitative Method of Fourier Transform Infrared Spectroscopy for Disaster Gases in Coalmine[J]. Safety in Coal Mines, 2017, 48(3): 13-17.
    [2]GAO Hao. Application of Spectral Remote Sensing Detection Technology in Coal Mine Environmental Monitoring[J]. Safety in Coal Mines, 2016, 47(10): 112-113,117.
    [3]ZHOU Haikun. Laser Methane Telemetry Technology Based on TDLAS[J]. Safety in Coal Mines, 2015, 46(7): 113-115.
    [4]MA Long. Application of TDLAS Technology in the Field of Coal Mine Gas Disaster Detection[J]. Safety in Coal Mines, 2015, 46(6): 87-89.
    [5]FENG Wenbin. Modulation Technology of Multi-gas Spectrum Line in Mine-used Spectral Equipment[J]. Safety in Coal Mines, 2015, 46(5): 117-120.
    [6]GAO Hao. Mine-used Optical Spectrum Analyzer Based on TDLAS Technology[J]. Safety in Coal Mines, 2015, 46(3): 94-96.
    [7]GAO Hao. Application of Wavelength Control Technology in Mine-used Laser Methane Sensor[J]. Safety in Coal Mines, 2014, 45(12): 102-105.
    [8]LI Qiang. An Infrared Gas Detector Based on Spectroscopy Differential Absorption Principle[J]. Safety in Coal Mines, 2013, 44(11): 111-113.
    [9]GAO Hao. A Methane Sensor Based on Tunable Laser Detection Technology[J]. Safety in Coal Mines, 2013, 44(6): 94-95.
    [10]PAN Ya-nan. The Laser-type Methane Sensor Based on the Spectral Absorption[J]. Safety in Coal Mines, 2013, 44(1): 99-101.

Catalog

    Article views (22) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return