• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
MENG Xiangshuai, LU Haifeng, NIAN Bin, YU Yu. Ground Grouting Reinforcement Roof Technology for Coal Mining Under Direct Cover of Caving Belt[J]. Safety in Coal Mines, 2020, 51(8): 90-95.
Citation: MENG Xiangshuai, LU Haifeng, NIAN Bin, YU Yu. Ground Grouting Reinforcement Roof Technology for Coal Mining Under Direct Cover of Caving Belt[J]. Safety in Coal Mines, 2020, 51(8): 90-95.

Ground Grouting Reinforcement Roof Technology for Coal Mining Under Direct Cover of Caving Belt

More Information
  • Published Date: August 19, 2020
  • In order to solve the problem of strengthening the broken roof of the coal seam under the direct cover of the caving zone, taking the 7228 working face of Xutuan Coal Mine as the engineering background, the paper proposes the ground grouting reinforcement plan, and studies its construction technology from four aspects of slurry selection, grouting technology, ground drilling technology and grouting effect evaluation. The cement coal ash slurry proportioning schemes with water cement ratio of 1∶1 and solid phase ratio of 2∶8 have been determined through the slurry static test, slurry water separation test and slurry proportioning test; the secondary structure drilling and secondary tunneling scheme have been designed in the drilling technology to ensure the quality of drilling and make the slurry reach the target layer smoothly; the roof of coal seam 72 has been exposed through surface drilling, underground geophysical exploration and underground mining, and the grouting effect is verified. Through the ground grouting reinforcement, the strength and integrity of the 72 coal seam roof have been significantly strengthened, and the engineering geological problems faced by the 7228 working face are solved, and the high-efficiency mining of 7228 working face is realized.
  • [1]
    查文华,华心祝,黄嵘,等.分岔合并下伏煤层破碎顶板超前注浆加固技术[J].地下空间与工程学报,2012, 8(5):1014-1020.
    [2]
    王震,娄芳,金士魁,等.极近距离煤层采空区下回采巷道位置及围岩控制研究[J].煤炭工程,2020,52(2):1-4.
    [3]
    李志刚,高圣元,李春睿.近距离煤层采空区下片帮冒顶控制技术[J].煤矿开采,2013,18(4):39-41.
    [4]
    郭萌,弓培林,李鹏.极近距离煤层采空区下巷道补强支护参数研究[J].煤炭工程,2020,52(1):54-58.
    [5]
    黄嵘.分岔合并煤层采空区下工作面破碎顶板控制技术研究[D].淮南:安徽理工大学,2012.
    [6]
    查文华,黄嵘,华心祝.许疃矿72煤工作面破碎顶板超前预注浆加固控制技术研究[J].煤炭工程,2012(9):44-47.
    [7]
    王同旭,王文斌,杜烨,等.节理岩体巷道顶板预应力锚杆加固作用研究[J].中国矿业大学学报,2007(5):618-621.
    [8]
    占丰林,蔡美峰.高温对采场顶板锚索加固系统的影响[J].辽宁工程技术大学学报,2007(4):524-526.
    [9]
    韩春,徐宁辉,张贵银,等.破碎顶板岩层超前注浆加固技术研究与应用[J].煤炭技术,2015,34(5):66-68.
    [10]
    李百林,王保贵,朱守颂,等.深井巷道顶板破碎区注浆加固技术[J].煤炭工程,2011(12):35-36.
    [11]
    曹胜根,刘长友.采场破碎顶板注浆加固机理[J].中国矿业大学学报,1998(3):70-72.
    [12]
    吴绍民,秦广鹏,张明光,等.厚煤层分岔区变厚度夹矸下回采巷道支护技术[J].中国矿业,2017,26(6):102-106.
    [13]
    刘广超.大断裂构造井上下联合注浆加固技术[J].煤矿安全,2018,49(10):163-167.
    [14]
    边强,金煜皓.综采工作面复合顶板失稳机理及深孔注浆控制技术[J].煤炭科学技术,2018,46(8):57.
    [15]
    郝阳军,郭亮,田元帅,等.下分层巷道掘进过煤层顶板压力破碎区注浆技术与现场应用[J].矿业安全与环保,2018,45(3):98-101.
    [16]
    陈春慧,宋选民.基于深浅孔注浆技术的破碎顶板岩层巷道综合治理[J].煤矿安全,2016,47(4):161.
    [17]
    陈士虎.顶板中空注浆锚索及底板注浆巷道修复技术[J].煤炭工程,2015,47(7):56-58.
    [18]
    李鹏,王刚.综放工作面破碎顶板注浆加固技术研究[J].煤炭工程,2014,46(2):37-38.
    [19]
    王全明.赵庄矿工作面复合顶板深孔预注浆加固技术[J].煤矿安全,2018,49(11):80-83.
    [20]
    陈金宇.大采高孤岛工作面顶板裂隙破碎带超前深孔复合预注浆控制技术研究[J].中国矿业,2019,28(12):150-154.
    [21]
    汪隆靖,孙建,吴俊.远距离输送地面注浆技术应用[J].煤炭与化工,2019,42(1):12-15.
    [22]
    刘泉声,卢超波,卢海峰,等.断层破碎带深部区域地表预注浆加固应用与分析[J].岩石力学与工程学报,2013,32(S2):3688-3695.
    [23]
    辛光明,邢文彬,武凯,等.阳城煤矿断层导水灾害“挡-堵”多体系防治技术[J].煤矿安全,2019,50(5):91-94.
    [24]
    张健,李术才,张乾青,等.覆盖型岩溶地基注浆处理与效果检测分析[J].建筑结构学报,2017,38(9):167-173.
    [25]
    赵永虎,白明禄,马新民,等.地表注浆在浅埋大断面黄土隧道中的应用研究[J].铁道工程学报,2019,36(7):48-51.
    [26]
    姜岩,高延法.覆岩注浆开采地表减沉过程分析[J].矿山压力与顶板管理,1997(1):24-26.
    [27]
    钟亚平.地下煤层开采覆岩离层注浆减少地面沉陷技术[J].中国矿业,2002(1):41-43.
    [28]
    田民波.材料学概论[M].北京:清华大学出版社,2015:156-164.
    [29]
    王红霞,王星,何廷树,等.灌浆材料的发展历程及研究进展[J].混凝土,2008(10):30-33.
    [30]
    徐斌,董书宁,徐路路,等.水泥基注浆材料浆液稳定性及其析水规律试验[J].煤田地质与勘探,2019,47(5):24-31.
  • Related Articles

    [1]JI Zhaoyang, CHEN Xiujie, FENG Qian, ZHANG Yiran, MIAO Dejun. Experimental research and application of high pressure spray cooling in long distance coal mining face[J]. Safety in Coal Mines, 2024, 55(10): 72-81. DOI: 10.13347/j.cnki.mkaq.20231466
    [2]ZHANG Jian, CAI Maolin, ZHANG Pengyan, XU Bo, JI Dege. Cold water interception cooling technology for surrounding rock of heat-damaged mine[J]. Safety in Coal Mines, 2023, 54(3): 1-8.
    [3]WANG Chunyao, ZHOU Jian, JIAN Junchang, ZHENG Xingbo, LUO Wei. Ventilation refrigeration and cooling technology of high temperature heat damaged mine[J]. Safety in Coal Mines, 2022, 53(9): 244-250.
    [4]LUO Tienan. Optical refraction detection method for emulsion concentration[J]. Safety in Coal Mines, 2021, 52(3): 156-158,164.
    [5]LI Wenfu, SONG Zhanhong, ZHANG Hongwei, WU Fengliang. Moving Refrigeration and Cooling Technology for Coal Mining Face at the First Level Heat Damage Area[J]. Safety in Coal Mines, 2020, 51(5): 93-97.
    [6]XIN Song, ZHANG Long, ZHANG Qi. Optimum Selection of Cooling Way for Long Distance and Large Width Coal Mining Face[J]. Safety in Coal Mines, 2018, 49(4): 173-176.
    [7]YAN Le, CHEN Donghong, KONG Lingjie, CHOU Xiujian. Wireless and Passive Vibration Monitoring System for Mine Emulsion Pump[J]. Safety in Coal Mines, 2016, 47(4): 139-142.
    [8]LUO Wei, SONG Xuanmin, LIU Cheng. Heat Damage Control Technology in More Than 1 000 m Deep Mine[J]. Safety in Coal Mines, 2014, 45(8): 88-91.
    [9]HE Fu-lian, YANG Bo-da, YANG Hong-zeng, XIE Sheng-rong, WANG Bo, DUAN Qi-tao. Ultrasound Microseism Recognition Principle and Detection Practice of Leak Failures for Powered Support in Fully Mechanized Caving Face[J]. Safety in Coal Mines, 2012, 43(6): 129-131,136.
    [10]SHI Li-ping, HAN Li, LIU Jing-jing, LI Ning. The Design of Mine-used Emulsion Pump Intelligent Control System[J]. Safety in Coal Mines, 2012, 43(6): 72-73.

Catalog

    Article views (34) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return