• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
HUANG Zhaomei, CAO Guangyong, CHENG Hua, MA Maoyan, HUANG Yishun. Correlation Analysis of Porosity and Uniaxial Compressive Strength of Jurassic Frozen Sandstone[J]. Safety in Coal Mines, 2020, 51(6): 227-231.
Citation: HUANG Zhaomei, CAO Guangyong, CHENG Hua, MA Maoyan, HUANG Yishun. Correlation Analysis of Porosity and Uniaxial Compressive Strength of Jurassic Frozen Sandstone[J]. Safety in Coal Mines, 2020, 51(6): 227-231.

Correlation Analysis of Porosity and Uniaxial Compressive Strength of Jurassic Frozen Sandstone

More Information
  • Published Date: June 19, 2020
  • To study the relationship between rock porosity and uniaxial compressive strength under freezing conditions, NMR and uniaxial compression tests were performed on Jurassic saturated aquifer sandstone under artificial freezing conditions. The relationship between temperature and uniaxial compressive strength and porosity under different temperature conditions was analyzed, and the porosity and uniaxial compressive strength were correlated. The results show that: the uniaxial compressive strength and temperature of sandstone satisfy the quadratic curve relationship; from -5 ℃ to -15 ℃, the increase value in uniaxial compressive strength decreases from 4.54 MPa to 0.54 MPa. The axial compressive strength growth rate decreased from 14.22% to 1.33%; the porosity of saturated frozen sandstone decreases with temperature, and its porosity also decreases, and the relationship between porosity and temperature complies with the power index function; the porosity of frozen sandstone and its uniaxial compressive strength meet the power index function relationship.
  • [1]
    程桦,林键,姚直书,等.我国西部地区孔隙型含水基岩段立井单层井壁外荷载研究[J].岩石力学与工程学报,2019,38(3):115-123.
    [2]
    程桦,蔡海兵.我国深立井冻结法凿井安全现状与思考[J].安徽理工大学学报(自然科学版),2013(2):1.
    [3]
    程桦,姚直书,荣传新. 我国西部地区冻结法凿井关键技术问题[C]//矿山建设工程技术新进展—2009全国矿山建设学术会议文集(上册).合肥:合肥工业大学出版社,2009:23-29.
    [4]
    杨更社,奚家米.煤矿立井冻结设计理论的研究现状与展望分析[J].地下空间与工程学报,2010(3):193.
    [5]
    姚直书.西部地区深基岩冻结井筒井壁结构设计与优化[J].煤炭学报,2010,35(5):760-764.
    [6]
    屈永龙.新庄煤矿白垩系砂岩冻结状态下物理力学特性试验研究[D].西安:西安科技大学,2014.
    [7]
    李杰林,周科平,柯波,等.冻融后花岗岩孔隙发育特征与单轴抗压强度的关联分析[J].煤炭学报,2015, 40(8):1783-1789.
    [8]
    李杰林,周科平,张亚民,等.基于核磁共振技术的岩石孔隙结构冻融损伤试验研究[J].岩石力学与工程学报,2012,31(6):1208-1214.
    [9]
    周科平,苏淑华,胡振襄,等.不同初始损伤下大理岩卸荷的核磁共振试验研究[J].岩土力学,2015,36(8):2144-2150.
    [10]
    李杰林,周科平,刘伟杰,等.砂岩细观结构冻融损伤特征的核磁共振研究[J].中国有色金属学报(英文版),2016,26(11):2997-3003.
    [11]
    刘慧,杨更社,叶万军,等.基于CT图像的冻结岩石冰含量及损伤特性分析[J].地下空间与工程学报, 2016,12(4):912-919.
    [12]
    刘慧,杨更社,贾海梁,等.裂隙(孔隙)水冻结过程中岩石细观结构变化的实验研究[J].岩石力学与工程学报,2016(12):2516-2524.
    [13]
    夏才初,李强,吕志涛,等.各向均匀与单向冻结条件下饱和岩石冻胀变形特性对比试验研究[J].岩石力学与工程学报,2018,37(2):274-281.
    [14]
    杨更社,魏尧,申艳军,等.冻结饱和砂岩三轴压缩力学特性及强度预测模型研究[J].岩石力学与工程学报,2019,38(4):683-694.
    [15]
    刘波,马永君,盛海龙,等.不同围压与冻结温度下白垩系红砂岩力学性质试验研究[J].岩石力学与工程学报,2019,38(3):28-39.
    [16]
    梁波.伊犁肖西矿井人工冻结岩石物理力学特性分析[J].建井技术,2016,37(1):41-43.
    [17]
    亓燕秋,王宗金,陈军浩.泊江海孜矿白垩系、侏罗系地层冻结岩石物理力学性能试验研究[J].中国煤炭,2015(10):56-59.
    [18]
    李博融,杨更社,奚家米,等.白垩系地层冻结砂岩物理力学试验研究[J].煤炭科学技术,2015,43(5):30-33.
    [19]
    田应国,杨更社,李博融,等.冻结白垩系砂岩强度特性试验研究[J].煤炭工程,2015,47(12):78-81.
    [20]
    杨更社,奚家米,邵学敏,等.冻结条件下岩石强度特性的试验[J].西安科技大学学报,2010,30(1):14.
  • Related Articles

    [1]REN Jianxi, YI Gui, CHEN Xu, CAO Xitailang. Experimental study on creep failure mechanism of artificially frozen sandstone of Luohe Formation after thawing[J]. Safety in Coal Mines, 2022, 53(7): 74-81.
    [2]WANG Heng, GUO Junhua. Application of C100 high performance concrete in freezing shaft wall[J]. Safety in Coal Mines, 2021, 52(9): 122-128.
    [3]WANG Xiaoyun, YAO Zhishu, JI Wenjie, HUANG Xianwen, MENG Xiangqian. Optimization of three-circle pipe layout for freezing shaft sinking based on combined weighting-grey correlation method[J]. Safety in Coal Mines, 2021, 52(8): 218-225.
    [4]LI Huaixin, LIN Bin, FAN Dengzheng. Uniaxial Compressive Strength Test on Artificially Frozen Clay[J]. Safety in Coal Mines, 2020, 51(7): 55-60.
    [5]LIU Wei, ZHANG Futao, LIU Limin. Analysis of Freezing Characteristics and Compressive Strength of Weathered Rock Mass in Northwest China[J]. Safety in Coal Mines, 2019, 50(11): 216-219.
    [6]WANG Mingzhi, CHEN Xian, LI Zhongsen, CHE Faming. Key Technologies for Fast Construction of Freezing Deep Vertical Shaft[J]. Safety in Coal Mines, 2019, 50(7): 100-102,107.
    [7]TIAN Yingguo, YANG Gengshe, LI Borong, ZHENG Xuanrong. Interaction of Freezing Shaft "Two-wall" in Cretaceous Strata[J]. Safety in Coal Mines, 2015, 46(12): 42-45.
    [8]LI Borong, YANG Gengshe, XI Jiami, CHEN Xinnian. Pressure Field and Tempreture Field Monitoring of Shaft Wall by Freezing Shaft Sinking in Rich Water and Soft Rock[J]. Safety in Coal Mines, 2015, 46(5): 58-62.
    [9]FANG Shi-yu, YUE Feng-tian, SHI Rong-jian, LIU Ping, ZHANG Hao-bei. Application of Liquid Nitrogen Freezing Method on Sealing Water of Pipelining Formation in Inclined Shaft[J]. Safety in Coal Mines, 2013, 44(4): 165-167.
    [10]ZHAO Qiang, WU Guang-hui. The Mechanism and Control Technology of Thawing Water Disaster Caused by the Bedrock Freezing Construction[J]. Safety in Coal Mines, 2013, 44(4): 91-93.
  • Cited by

    Periodical cited type(0)

    Other cited types(5)

Catalog

    Article views (20) PDF downloads (0) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return