Citation: | HUANG Zhaomei, CAO Guangyong, CHENG Hua, MA Maoyan, HUANG Yishun. Correlation Analysis of Porosity and Uniaxial Compressive Strength of Jurassic Frozen Sandstone[J]. Safety in Coal Mines, 2020, 51(6): 227-231. |
[1] |
程桦,林键,姚直书,等.我国西部地区孔隙型含水基岩段立井单层井壁外荷载研究[J].岩石力学与工程学报,2019,38(3):115-123.
|
[2] |
程桦,蔡海兵.我国深立井冻结法凿井安全现状与思考[J].安徽理工大学学报(自然科学版),2013(2):1.
|
[3] |
程桦,姚直书,荣传新. 我国西部地区冻结法凿井关键技术问题[C]//矿山建设工程技术新进展—2009全国矿山建设学术会议文集(上册).合肥:合肥工业大学出版社,2009:23-29.
|
[4] |
杨更社,奚家米.煤矿立井冻结设计理论的研究现状与展望分析[J].地下空间与工程学报,2010(3):193.
|
[5] |
姚直书.西部地区深基岩冻结井筒井壁结构设计与优化[J].煤炭学报,2010,35(5):760-764.
|
[6] |
屈永龙.新庄煤矿白垩系砂岩冻结状态下物理力学特性试验研究[D].西安:西安科技大学,2014.
|
[7] |
李杰林,周科平,柯波,等.冻融后花岗岩孔隙发育特征与单轴抗压强度的关联分析[J].煤炭学报,2015, 40(8):1783-1789.
|
[8] |
李杰林,周科平,张亚民,等.基于核磁共振技术的岩石孔隙结构冻融损伤试验研究[J].岩石力学与工程学报,2012,31(6):1208-1214.
|
[9] |
周科平,苏淑华,胡振襄,等.不同初始损伤下大理岩卸荷的核磁共振试验研究[J].岩土力学,2015,36(8):2144-2150.
|
[10] |
李杰林,周科平,刘伟杰,等.砂岩细观结构冻融损伤特征的核磁共振研究[J].中国有色金属学报(英文版),2016,26(11):2997-3003.
|
[11] |
刘慧,杨更社,叶万军,等.基于CT图像的冻结岩石冰含量及损伤特性分析[J].地下空间与工程学报, 2016,12(4):912-919.
|
[12] |
刘慧,杨更社,贾海梁,等.裂隙(孔隙)水冻结过程中岩石细观结构变化的实验研究[J].岩石力学与工程学报,2016(12):2516-2524.
|
[13] |
夏才初,李强,吕志涛,等.各向均匀与单向冻结条件下饱和岩石冻胀变形特性对比试验研究[J].岩石力学与工程学报,2018,37(2):274-281.
|
[14] |
杨更社,魏尧,申艳军,等.冻结饱和砂岩三轴压缩力学特性及强度预测模型研究[J].岩石力学与工程学报,2019,38(4):683-694.
|
[15] |
刘波,马永君,盛海龙,等.不同围压与冻结温度下白垩系红砂岩力学性质试验研究[J].岩石力学与工程学报,2019,38(3):28-39.
|
[16] |
梁波.伊犁肖西矿井人工冻结岩石物理力学特性分析[J].建井技术,2016,37(1):41-43.
|
[17] |
亓燕秋,王宗金,陈军浩.泊江海孜矿白垩系、侏罗系地层冻结岩石物理力学性能试验研究[J].中国煤炭,2015(10):56-59.
|
[18] |
李博融,杨更社,奚家米,等.白垩系地层冻结砂岩物理力学试验研究[J].煤炭科学技术,2015,43(5):30-33.
|
[19] |
田应国,杨更社,李博融,等.冻结白垩系砂岩强度特性试验研究[J].煤炭工程,2015,47(12):78-81.
|
[20] |
杨更社,奚家米,邵学敏,等.冻结条件下岩石强度特性的试验[J].西安科技大学学报,2010,30(1):14.
|
[1] | REN Jianxi, YI Gui, CHEN Xu, CAO Xitailang. Experimental study on creep failure mechanism of artificially frozen sandstone of Luohe Formation after thawing[J]. Safety in Coal Mines, 2022, 53(7): 74-81. |
[2] | WANG Heng, GUO Junhua. Application of C100 high performance concrete in freezing shaft wall[J]. Safety in Coal Mines, 2021, 52(9): 122-128. |
[3] | WANG Xiaoyun, YAO Zhishu, JI Wenjie, HUANG Xianwen, MENG Xiangqian. Optimization of three-circle pipe layout for freezing shaft sinking based on combined weighting-grey correlation method[J]. Safety in Coal Mines, 2021, 52(8): 218-225. |
[4] | LI Huaixin, LIN Bin, FAN Dengzheng. Uniaxial Compressive Strength Test on Artificially Frozen Clay[J]. Safety in Coal Mines, 2020, 51(7): 55-60. |
[5] | LIU Wei, ZHANG Futao, LIU Limin. Analysis of Freezing Characteristics and Compressive Strength of Weathered Rock Mass in Northwest China[J]. Safety in Coal Mines, 2019, 50(11): 216-219. |
[6] | WANG Mingzhi, CHEN Xian, LI Zhongsen, CHE Faming. Key Technologies for Fast Construction of Freezing Deep Vertical Shaft[J]. Safety in Coal Mines, 2019, 50(7): 100-102,107. |
[7] | TIAN Yingguo, YANG Gengshe, LI Borong, ZHENG Xuanrong. Interaction of Freezing Shaft "Two-wall" in Cretaceous Strata[J]. Safety in Coal Mines, 2015, 46(12): 42-45. |
[8] | LI Borong, YANG Gengshe, XI Jiami, CHEN Xinnian. Pressure Field and Tempreture Field Monitoring of Shaft Wall by Freezing Shaft Sinking in Rich Water and Soft Rock[J]. Safety in Coal Mines, 2015, 46(5): 58-62. |
[9] | FANG Shi-yu, YUE Feng-tian, SHI Rong-jian, LIU Ping, ZHANG Hao-bei. Application of Liquid Nitrogen Freezing Method on Sealing Water of Pipelining Formation in Inclined Shaft[J]. Safety in Coal Mines, 2013, 44(4): 165-167. |
[10] | ZHAO Qiang, WU Guang-hui. The Mechanism and Control Technology of Thawing Water Disaster Caused by the Bedrock Freezing Construction[J]. Safety in Coal Mines, 2013, 44(4): 91-93. |