• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
ZHAO Jianguo. Drilling Technology of Torsional Impact Rotary Reaming in Underground Coal Mine[J]. Safety in Coal Mines, 2020, 51(6): 120-123.
Citation: ZHAO Jianguo. Drilling Technology of Torsional Impact Rotary Reaming in Underground Coal Mine[J]. Safety in Coal Mines, 2020, 51(6): 120-123.

Drilling Technology of Torsional Impact Rotary Reaming in Underground Coal Mine

More Information
  • Published Date: June 19, 2020
  • According to the reaming requirement for large diameter directional drilling in hard rock of coal mine roof, the drilling technology of torsional impact rotary reaming is put forward. Based on the simulation results of FLUENT finite element software, the research of small displacement quantification transformation of torsion impactor is carried out, and the working performance of torsion impactor is tested. The relationship of throttle pressure drop, impact torque, throttle nozzle diameter and work displacement is verified. It is proved that the small displacement quantification transformation of torsion impactor can be realized by reducing the throttle nozzle diameter. The combination of rotary reaming tools with torsional impact is designed. The influence factors and calculation methods of reaming parameters such as drilling pressure, pump volume and rotational speed are discussed, and the matching of reaming parameters is improved. On this basis, the field test of rotary reaming drilling with torsional impact is carried out. The test results show that the mechanical drilling efficiency of primary reaming of ?准200 mm drilling hole is up to 10 m/h, which provides the technical basis for efficient reaming of large diameter directional drilling of hard rock in coal mine roof.
  • [1]
    张铁岗.矿井瓦斯综合治理技术[M].北京:煤炭工业出版社,2001:99-109.
    [2]
    陈开岩,张占国,林柏泉,等.综放工作面抽采条件下瓦斯涌出及分布特征[J].采矿与安全工程学报,2009, 26(4):418-422.
    [3]
    李平,童碧,许超.顶板复杂地层高位定向钻孔成孔工艺研究[J].煤田地质与勘探,2018,46(4):197-201.
    [4]
    朱大志,陈志平,徐宏.封闭采空区瓦斯抽采地面钻井技术在大隆矿的初步应用[J].煤矿安全,2009,40(8):20-22.
    [5]
    赵建国.煤层顶板高位定向钻孔施工技术与发展趋势[J].煤炭科学技术,2017,45(6):137-141.
    [6]
    孙荣军,李泉新,方俊,等.采空区瓦斯抽采高位钻孔施工技术及发展趋势[J].煤炭科学技术,2017,45(1):94-99.
    [7]
    许超,刘飞,方俊.高位定向长钻孔瓦斯抽采技术及抽采效果分析[J].煤炭工程,2017,49(6):78-81.
    [8]
    刘洋.高瓦斯矿井采空区大直径高位钴孔瓦斯抽采技术研究[D].太原:太原理工大学:56.
    [9]
    王海锋,程远平,沈永铜,等.高产高效工作面顶板走向钻孔瓦斯抽采技术[J].采矿与安全工程学报,2008, 25(2):168-171.
    [10]
    周卫金,方小伟.高位钻孔抽放的瓦斯渗流研究[J].煤炭科学技术,2006,34(1):76-78.
    [11]
    方俊,石智军,李泉新,等.顶板高位定向大直径长钻孔钻进技术与装备[J].矿业研究与开发,2015,35(7):92-97.
    [12]
    赵建国,刘建林,董昌乐,等.顶板高位大直径定向钻孔扩孔新技术探索[J].煤炭科学技术,2018,46(4):40-45.
    [13]
    周燕,安庆宝,蔡文军,等.SLTIT型扭转冲击钻井提速工具[J].石油机械,2012,40(2):15-17.
    [14]
    周燕,金有海,董怀荣,等.SLTIDT型钻井提速工具研制[J].石油矿场机械,2013,42(1):67-70.
    [15]
    王四一,赵江鹏,赵建国.扭力冲击器在煤矿井下硬岩钻进中的应用研究[J].煤矿机械,2018,39(10):139-141.
    [16]
    祝校华,汤历平,吴华,等.扭转冲击钻具设计与室内试验[J].石油机械,2011,39(5):27-29.
    [17]
    李玮,何选蓬,闫铁,等.近钻头扭转冲击器破岩机理及应用[J].石油钻采工艺,2014,36(5):1-4.
    [18]
    齐列锋.新型液压式扭力冲击器设计与动力仿真[D].荆州:长江大学,2016.
    [19]
    彭腊梅,李光,蒲天一.松软突出煤层整体式三棱螺旋钻杆中试研究[J].煤炭科学技术,2013,41(8):133-136.
    [20]
    董昌乐,董萌萌,赵建国,等.整体式螺旋钻杆的研制及应用[J].煤田地质与勘探,2016,44(5):164-167.
    [21]
    赵建国,李泉新.碎软煤层定向钻进技术研究与应用[J].煤矿安全,2018,49(7):119-122.
  • Related Articles

    [1]REN Jianxi, YI Gui, CHEN Xu, CAO Xitailang. Experimental study on creep failure mechanism of artificially frozen sandstone of Luohe Formation after thawing[J]. Safety in Coal Mines, 2022, 53(7): 74-81.
    [2]WANG Heng, GUO Junhua. Application of C100 high performance concrete in freezing shaft wall[J]. Safety in Coal Mines, 2021, 52(9): 122-128.
    [3]WANG Xiaoyun, YAO Zhishu, JI Wenjie, HUANG Xianwen, MENG Xiangqian. Optimization of three-circle pipe layout for freezing shaft sinking based on combined weighting-grey correlation method[J]. Safety in Coal Mines, 2021, 52(8): 218-225.
    [4]LI Huaixin, LIN Bin, FAN Dengzheng. Uniaxial Compressive Strength Test on Artificially Frozen Clay[J]. Safety in Coal Mines, 2020, 51(7): 55-60.
    [5]LIU Wei, ZHANG Futao, LIU Limin. Analysis of Freezing Characteristics and Compressive Strength of Weathered Rock Mass in Northwest China[J]. Safety in Coal Mines, 2019, 50(11): 216-219.
    [6]WANG Mingzhi, CHEN Xian, LI Zhongsen, CHE Faming. Key Technologies for Fast Construction of Freezing Deep Vertical Shaft[J]. Safety in Coal Mines, 2019, 50(7): 100-102,107.
    [7]TIAN Yingguo, YANG Gengshe, LI Borong, ZHENG Xuanrong. Interaction of Freezing Shaft "Two-wall" in Cretaceous Strata[J]. Safety in Coal Mines, 2015, 46(12): 42-45.
    [8]LI Borong, YANG Gengshe, XI Jiami, CHEN Xinnian. Pressure Field and Tempreture Field Monitoring of Shaft Wall by Freezing Shaft Sinking in Rich Water and Soft Rock[J]. Safety in Coal Mines, 2015, 46(5): 58-62.
    [9]FANG Shi-yu, YUE Feng-tian, SHI Rong-jian, LIU Ping, ZHANG Hao-bei. Application of Liquid Nitrogen Freezing Method on Sealing Water of Pipelining Formation in Inclined Shaft[J]. Safety in Coal Mines, 2013, 44(4): 165-167.
    [10]ZHAO Qiang, WU Guang-hui. The Mechanism and Control Technology of Thawing Water Disaster Caused by the Bedrock Freezing Construction[J]. Safety in Coal Mines, 2013, 44(4): 91-93.
  • Cited by

    Periodical cited type(0)

    Other cited types(5)

Catalog

    Article views (27) PDF downloads (0) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return