• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
XIA Fangqian, QU Xiaocheng, WEI Quande, WANG Yanliang, KONG He. Mechanism and Prevention of Rock Burst Induced by Multi-key Layer Fracture of High Stress Coal Pillar[J]. Safety in Coal Mines, 2020, 51(5): 162-168.
Citation: XIA Fangqian, QU Xiaocheng, WEI Quande, WANG Yanliang, KONG He. Mechanism and Prevention of Rock Burst Induced by Multi-key Layer Fracture of High Stress Coal Pillar[J]. Safety in Coal Mines, 2020, 51(5): 162-168.

Mechanism and Prevention of Rock Burst Induced by Multi-key Layer Fracture of High Stress Coal Pillar

More Information
  • Published Date: May 19, 2020
  • Aiming at the technical problem of preventing and controlling the large section coal pillar rock burst of high-strength mining under the control condition of overlying multi-key strata, the mechanism and prevention and control methods of coal pillar rock burst in the return air roadway section of 31102 working face of a mine were studied by means of numerical simulation, key strata analysis and micro seismic monitoring. The results show that the maximum stress concentration factor of coal pillar is 3.02 under the action of high static stress in the return air roadway section; there are many key strata above the working face, and a large number of micro seismic events occur when the key strata break, and act on the coal pillar in the form of additional dynamic stress. When the sum of forces is greater than the strength of the coal pillar, the coal pillar will be impacted. The preventive measures of “pre-pressure relief of large diameter boreholes + on-site pressure relief of secondary oblique boreholes” are proposed. The field measured data show that the scheme is effective and reliable.
  • [1]
    余学义,王琦,赵兵朝,等.大采高双巷布置工作面巷间煤柱合理宽度研究[J].岩石力学与工程学报,2015, 34(S1):744-752.
    [2]
    谢广祥,杨科,刘全明.综放面倾向煤柱支承压力分布规律研究[J].岩石力学与工程学报,2006,25(3): 118-122.
    [3]
    刘长友,刘奎,郭永峰,等.超长“孤岛”综放面大煤柱护巷的数值模拟[J].中国矿业大学学报,2006,35(4):51-55.
    [4]
    高明仕,窦林名,张农,等.煤(矿)柱失稳冲击破坏的突变模型及其应用[J].中国矿业大学学报,2005,34(4):29-33.
    [5]
    刘金海,姜福兴,王乃国,等.深井特厚煤层综放工作面区段煤柱合理宽度研究[J].岩石力学与工程学报, 2012,31(5):62-68.
    [6]
    窦林名,何江,曹安业,等.煤矿冲击矿压动静载叠加原理及其防治[J].煤炭学报,2015,40(7):5-12.
    [7]
    窦林名,姜耀东,曹安业,等.煤矿冲击矿压动静载的“应力场-震动波场”监测预警技术[J].岩石力学与工程学报,2017,36(4):29-37.
    [8]
    潘俊锋,王书文,刘少虹,等.双巷布置工作面外围巷道冲击地压启动机理[J].采矿与安全工程学报, 2018,35(2):67-74.
    [9]
    姜福兴,姚顺利,魏全德,等.矿震诱发型冲击地压临场预警机制及应用研究[J].岩石力学与工程学报, 2015,34(S1):788-796.
    [10]
    姜福兴,王平,冯增强,等.复合型厚煤层“震-冲”型动力灾害机理、预测与控制[J].煤炭学报,2009,34(12):23-27.
    [11]
    齐庆新,李晓璐,赵善坤.煤矿冲击地压应力控制理论与实践[J].煤炭科学技术,2013,41(6):1-5.
    [12]
    齐庆新,欧阳振华,赵善坤,等.我国冲击地压矿井类型及防治方法研究[J].煤炭科学技术,2014,42(10):1-5.
    [13]
    刘金海,姜福兴,孙广京,等.强排煤粉防治冲击地压的机制与应用[J].岩石力学与工程学报,2014,33(4):104-111.
    [14]
    姜福兴,魏全德,姚顺利,等.冲击地压防治关键理论与技术分析[J].煤炭科学技术,2013,41(6):12.
    [15]
    于正兴,姜福兴,桂兵,等.防治冲击地压的应力三向化理论研究及应用[J].煤炭科学技术,2011,39(7): 7-10.
    [16]
    潘一山,肖永惠,李忠华,等.冲击地压矿井巷道支护理论研究及应用[J].煤炭学报,2014,39(2):20-26.
    [17]
    吕祥锋,潘一山.刚柔耦合吸能支护煤岩巷道冲击破坏相似试验与数值计算对比分析[J].岩土工程学报,2012,34(3):99-104.
    [18]
    钱鸣高,缪协兴,许家林,等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2003:106-111.
    [19]
    徐学锋,窦林名,刘军,等.动载扰动诱发底板冲击矿压演化规律研究[J].采矿与安全工程学报,2012, 29(3):334-338.
    [20]
    陈国祥,窦林名,高明仕,等.动力挠动对回采巷道冲击危险的数值模拟[J].采矿与安全工程学报,2009,26(2):153-157.
  • Related Articles

    [1]GUO Jing, SONG Yaobin, ZHAO Liding, MA Liyun. Research on Boundary Position Optimization for Very Close Vertical Distance Cross-mining Face and Surrounding Rock Stability of Floor Roadway[J]. Safety in Coal Mines, 2018, 49(7): 28-33.
    [2]QI Jie, LIU Bingliang. Measurement Analysis and Simulation Study on Advanced Ground Pressure Laws of Two Roadways at 22303 Working Face in Bulianta Coal Mine[J]. Safety in Coal Mines, 2017, 48(s1): 10-14.
    [3]MA Jianhong, HOU Chao, CHEN Yibo, LI Jianming. Namerical Simulation of Top Coal Movement Laws at Fully Mechanized Mining Face[J]. Safety in Coal Mines, 2016, 47(8): 216-218.
    [4]YANG Gangshuai, NING Jianguo, WANG Jun, SHI Xinshuai. Study on Reasonable Size of Coal Pillar at Large Mining Height Fully-mechanized Coal Caving Face in Ordos Region[J]. Safety in Coal Mines, 2016, 47(2): 66-68,72.
    [5]SUN Haiyang, WANG Lianguo, LU Yinlong, HUANG Yaoguang. Numerical Simulation and Parameter Optimization of Advance Anchor Bolt Support in Fault[J]. Safety in Coal Mines, 2015, 46(8): 205-208.
    [6]SUN Shaolong, ZHANG Jinwang. Distribution Law of Advanced Abutment Pressure of Gangue Backfilling Working Face[J]. Safety in Coal Mines, 2015, 46(8): 33-35.
    [7]CUI Shujiang. Actual Measurement for Reasonable Coal Pillar Width of Fully Mechanized Caving Face Stopping Line of Tashan Coal Mine[J]. Safety in Coal Mines, 2015, 46(3): 190-193.
    [8]ZHANG Chunlei, LI Fusheng, LIU Jinkai, ZHANG Shiqing, ZHAO Jianjian, XU Lifeng. Rational Alternate Research on Simultaneous Mining Faces in Lijiahao Close Distance Seams[J]. Safety in Coal Mines, 2014, 45(3): 38-41.
    [9]LIU Xiao, ZHA Wen-hua, LU De-chao, LIANG Xiao-chen. Distribution Laws of Abutment Pressure for Deep Fully-mechanized Top-coal Caving Face With Large Mining Height[J]. Safety in Coal Mines, 2013, 44(7): 47-49,53.
    [10]XIONG Li-jun, ZHA Wen-hua, LIU Xiao-hu. Numerical Simulation Analysis of Stress Distribution Characteristics in Large Mining Height Fully Mechanized Coal Face[J]. Safety in Coal Mines, 2013, 44(2): 75-77.

Catalog

    Article views (12) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return