• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
SUN Zhuoyue, YANG Dong, PEI Yue, SUN Liuwei, MA Xiaomin. Determination of Drainage Effective Radius of CO2 Phase Transition Fracturing Based on Time-source Method[J]. Safety in Coal Mines, 2020, 51(3): 1-5,11.
Citation: SUN Zhuoyue, YANG Dong, PEI Yue, SUN Liuwei, MA Xiaomin. Determination of Drainage Effective Radius of CO2 Phase Transition Fracturing Based on Time-source Method[J]. Safety in Coal Mines, 2020, 51(3): 1-5,11.

Determination of Drainage Effective Radius of CO2 Phase Transition Fracturing Based on Time-source Method

More Information
  • Published Date: March 19, 2020
  • There is no uniform standard for determining the drainage effective radius of CO2 phase transition fracturing in view of the fact, we analyze the traditional measurement for drainage effective radius, clarify definition of drainage radius. The time-source method is established based on SF6 tracer method and test data, and it was tested in coal mine. The research shows there is time effect between drainage influence radius and drainage effective radius, and the drainage time is the key factor to distinguish them; the time-source method divides the drainage time into drainage effective time and drainage compensation time. The drainage effective radius under a certain time is obtained through SF6 tracer method and analysis of the field data. It can reflect the drainage situation of boreholes more accurately; the test-in-place experimented at main haulage roadway in No.3 coal seam of Daping Coal Mine. The result shows that the drainage effective radius after CO2 phase transition fracturing is 12 m when the drainage time is 120 d and drainage effective radius is 16 m when the drainage time is 148 d.
  • [1]
    张铁岗.矿井瓦斯综合治理技术[M].北京:煤炭工业出版社,2001:3-5.
    [2]
    樊保龙,白春华,李建平.基于LMD-SVM的采煤工作面瓦斯涌出量预测[J].采矿与安全工程学报,2013, 30(6):946-952.
    [3]
    张东明,白鑫,尹光志,等.低渗煤层液态CO2相变定向射孔致裂增透技术及应用[J].煤炭学报,2018,43(7):1938-1950.
    [4]
    朱南南,张浪,范喜生,等.基于瓦斯径向渗流方程的有效抽采半径求解方法研究[J].煤炭科学技术,2017,45(10):105-110.
    [5]
    鲁义,申宏敏,秦波涛,等.顺层钻孔瓦斯抽采半径及布孔间距研究[J].采矿与安全工程学报,2015,32(1):156-162.
    [6]
    梁冰,袁欣鹏,孙维吉,等.分组测压确定瓦斯有效抽采半径试验研究[J].采矿与安全工程学报,2013,30(1):132-135.
    [7]
    郝富昌,刘明举,孙丽娟.基于多物理场耦合的瓦斯抽放半径确定方法[J].煤炭学报,2013,38(S1):106.
    [8]
    季淮君,李增华,杨永良,等.基于瓦斯流场的抽采半径确定方法[J].采矿与安全工程学报,2013,30(6):917-921.
    [9]
    王兆丰,李炎涛,夏会辉,等.基于COMOSOL的顺层钻孔有效抽采半径的数值模拟[J].煤矿安全,2012, 43(10):4-6.
    [10]
    Bing W, Mingguo H, Xiaoyan F, et al. Study on Methods of Determining Gas Extraction Radius with Numerical Simulation[J]. Procedia Engineering, 2012, 45(2): 345-351.
    [11]
    郝富昌,刘明举,孙丽娟.瓦斯抽采半径确定方法的比较及存在问题研究[J].煤炭科学技术,2012,40(12):55-58.
    [12]
    俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992:103-104.
    [13]
    徐三民.确定瓦斯有效抽放半径的方法探讨[J].煤炭工程师,1996(3):43-44.
    [14]
    国家安全生产监督管理总局,国家煤矿安全监察局.防治煤与瓦斯突出规定[M].北京:煤炭工业出版社,2009:20-21.
    [15]
    国家安全生产监督管理总局,国家发展和改革委员会,国家能源局,等.煤矿瓦斯抽采达标暂行规定[M].北京:煤炭工业出版社,2016:5-6.
  • Related Articles

    [1]SUN Zhenping, LIU Xiao, PAN Tao. Study on spontaneous combustion characteristics of residual coal in adjacent goaf during mining of small coal pillar working face[J]. Safety in Coal Mines, 2025, 56(2): 102-108. DOI: 10.13347/j.cnki.mkaq.20240860
    [2]ZOU Yongming. “Vertical Three Zones” Determination of Overburden Based on Tracer Gas Method[J]. Safety in Coal Mines, 2019, 50(5): 7-10.
    [3]RAO Zi. Application of SF6 Tracer Gas Leakage Test Technology in Baijiao Coal Mine[J]. Safety in Coal Mines, 2018, 49(6): 122-125.
    [4]LYU Zhijin, OUYANG Hui, QIN Qinghe, LI Peng. Analysis and Treatment of CO Anomaly Occurred in 22307 Goaf of Bulianta Coal Mine[J]. Safety in Coal Mines, 2016, 47(6): 151-153.
    [5]LIU Feifei, HUANG Yuanyue, XU Quan, LI Shuai, ZHAO Pengtao, QIN Zuoya, HUANG Bing. Numerical Simulation of Seepage-heat Similarity for Effective Radius of Drilling Gas Drainage[J]. Safety in Coal Mines, 2014, 45(12): 1-5.
    [6]ZHONG Hou-xuan. Using Effective Pressure Index Method to Measure Drilling Effective Drainage Radius[J]. Safety in Coal Mines, 2013, 44(8): 166-168.
    [7]ZHANG Hai-feng, ZHANG Mao-wen. Detection Technology of Goaf Air Leakage in Shallow Buried Depth Fully Mechanized Caving Face[J]. Safety in Coal Mines, 2013, 44(6): 63-65,69.
    [8]HE Jun-zhong, YANG Hong-wei. Application of SF_6 Tracer Gas in the Goaf Air Leakage Measurement and Nitrogen Injection Optimization[J]. Safety in Coal Mines, 2012, 43(S1): 119-121.
    [9]WANG Zhao-feng, LI Yan-tao, XIA Hui-hui, TAN Rong-hui. Numerical Simulation on Effective Drainage Radius of Drill Hole Along Coal Seam Based on COMSOL[J]. Safety in Coal Mines, 2012, 43(10): 4-6.
    [10]WU Jian-ming, LI Ming-zhu, ZHOU Chun-shan. The Test and Analysis of Gob Air Leakage Law in Gob-side Entry Retaining with Y-Type Ventilation Condition[J]. Safety in Coal Mines, 2012, 43(4): 132-134,138.
  • Cited by

    Periodical cited type(3)

    1. 杨希培,邵文琦,杨百舸,徐锋懿. 难抽煤层CO_2气相压裂瓦斯高效抽采技术研究. 山西焦煤科技. 2024(01): 1-4+10 .
    2. 潘吉成. 基于三维流固耦合模型的煤层瓦斯有效抽采半径研究. 中国煤炭. 2024(S1): 128-134 .
    3. 白雁楠,樊志刚. 余吾煤业3~#煤层N3102工作面瓦斯抽采半径考察. 能源技术与管理. 2023(06): 40-42 .

    Other cited types(2)

Catalog

    Article views (225) PDF downloads (0) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return