• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
SUN Zhuoyue, YANG Dong, PEI Yue, SUN Liuwei, MA Xiaomin. Determination of Drainage Effective Radius of CO2 Phase Transition Fracturing Based on Time-source Method[J]. Safety in Coal Mines, 2020, 51(3): 1-5,11.
Citation: SUN Zhuoyue, YANG Dong, PEI Yue, SUN Liuwei, MA Xiaomin. Determination of Drainage Effective Radius of CO2 Phase Transition Fracturing Based on Time-source Method[J]. Safety in Coal Mines, 2020, 51(3): 1-5,11.

Determination of Drainage Effective Radius of CO2 Phase Transition Fracturing Based on Time-source Method

More Information
  • Published Date: March 19, 2020
  • There is no uniform standard for determining the drainage effective radius of CO2 phase transition fracturing in view of the fact, we analyze the traditional measurement for drainage effective radius, clarify definition of drainage radius. The time-source method is established based on SF6 tracer method and test data, and it was tested in coal mine. The research shows there is time effect between drainage influence radius and drainage effective radius, and the drainage time is the key factor to distinguish them; the time-source method divides the drainage time into drainage effective time and drainage compensation time. The drainage effective radius under a certain time is obtained through SF6 tracer method and analysis of the field data. It can reflect the drainage situation of boreholes more accurately; the test-in-place experimented at main haulage roadway in No.3 coal seam of Daping Coal Mine. The result shows that the drainage effective radius after CO2 phase transition fracturing is 12 m when the drainage time is 120 d and drainage effective radius is 16 m when the drainage time is 148 d.
  • [1]
    张铁岗.矿井瓦斯综合治理技术[M].北京:煤炭工业出版社,2001:3-5.
    [2]
    樊保龙,白春华,李建平.基于LMD-SVM的采煤工作面瓦斯涌出量预测[J].采矿与安全工程学报,2013, 30(6):946-952.
    [3]
    张东明,白鑫,尹光志,等.低渗煤层液态CO2相变定向射孔致裂增透技术及应用[J].煤炭学报,2018,43(7):1938-1950.
    [4]
    朱南南,张浪,范喜生,等.基于瓦斯径向渗流方程的有效抽采半径求解方法研究[J].煤炭科学技术,2017,45(10):105-110.
    [5]
    鲁义,申宏敏,秦波涛,等.顺层钻孔瓦斯抽采半径及布孔间距研究[J].采矿与安全工程学报,2015,32(1):156-162.
    [6]
    梁冰,袁欣鹏,孙维吉,等.分组测压确定瓦斯有效抽采半径试验研究[J].采矿与安全工程学报,2013,30(1):132-135.
    [7]
    郝富昌,刘明举,孙丽娟.基于多物理场耦合的瓦斯抽放半径确定方法[J].煤炭学报,2013,38(S1):106.
    [8]
    季淮君,李增华,杨永良,等.基于瓦斯流场的抽采半径确定方法[J].采矿与安全工程学报,2013,30(6):917-921.
    [9]
    王兆丰,李炎涛,夏会辉,等.基于COMOSOL的顺层钻孔有效抽采半径的数值模拟[J].煤矿安全,2012, 43(10):4-6.
    [10]
    Bing W, Mingguo H, Xiaoyan F, et al. Study on Methods of Determining Gas Extraction Radius with Numerical Simulation[J]. Procedia Engineering, 2012, 45(2): 345-351.
    [11]
    郝富昌,刘明举,孙丽娟.瓦斯抽采半径确定方法的比较及存在问题研究[J].煤炭科学技术,2012,40(12):55-58.
    [12]
    俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992:103-104.
    [13]
    徐三民.确定瓦斯有效抽放半径的方法探讨[J].煤炭工程师,1996(3):43-44.
    [14]
    国家安全生产监督管理总局,国家煤矿安全监察局.防治煤与瓦斯突出规定[M].北京:煤炭工业出版社,2009:20-21.
    [15]
    国家安全生产监督管理总局,国家发展和改革委员会,国家能源局,等.煤矿瓦斯抽采达标暂行规定[M].北京:煤炭工业出版社,2016:5-6.
  • Related Articles

    [1]JIANG Lijuan, ZHANG Junhu, DENG Cunbao, NIAN Jun, CAI Meng, LYU Xiaobo, LEI Changkui. Research on distribution characteristic of “three zones” of coal spontaneous combustion in goaf with double cut roof retaining roadway[J]. Safety in Coal Mines, 2023, 54(12): 56-63. DOI: 10.13347/j.cnki.mkaq.2023.12.009
    [2]XUAN Zhongtang, ZHAO Shankun, YANG Xiaocheng, YANG Yong, LYU Kun. Deformation Characteristics and Reinforcement Support Technology of Surrounding Rock in Multi-Lane Filling and Retaining Roadway[J]. Safety in Coal Mines, 2019, 50(10): 93-97.
    [3]ZHOU Rui. Numerical Simulation on Creep Properties of Filling Body of Gob-side Entry Retaining[J]. Safety in Coal Mines, 2018, 49(3): 218-221.
    [4]ZHU Huaizhi, WANG Miao, XU Pengwei, HUANG Chengjun. Application of Pier Column Gob-side Entry Retaining Roadway in Weak Roof Coal Seam[J]. Safety in Coal Mines, 2017, 48(11): 159-162.
    [5]CHI Xiuwen, ZHANG Wenju, ZHANG Jiuyu. Roadway Side Support of “Finite Deformation” in Gob-side Entry Retaining Under Hard Roof[J]. Safety in Coal Mines, 2017, 48(10): 191-194.
    [6]ZHANG Zhaoyi, ZHANG Kaizhi, YIN Dawei, SUN Zhishuai, LIU Baocheng. Pre-cutting Roof Gob Side Entry Retaining Supporting Technology for Roadway[J]. Safety in Coal Mines, 2016, 47(11): 222-225.
    [7]ZHAO Yuxiang, LEI Yanzhi, YANG Xiaolong, YANG Fang. Gob-side Entry Retaining Technology Under Coal Pillar of Goaf in "Two Hard" and Thin Coal Seam[J]. Safety in Coal Mines, 2015, 46(12): 88-91.
    [8]SHI Jianjun, ZHANG Jun, YAN Dezhong. Numerical Simulation on Roadway-side Support Resistance for Gob-side Entry Retaining[J]. Safety in Coal Mines, 2015, 46(9): 57-60.
    [9]SHI Jian-jun, SHI Hao-yu. Numerical Simulation Analysis of Roof Fracture Laws for Gob-side Entry Retaining[J]. Safety in Coal Mines, 2013, 44(9): 191-193,194.
    [10]LI Yan-jun, ZHANG Bao, LI Li, LI Jun-feng, LI Zong-chao, LI Wei-bin. Anclysis of Roadway Supporting Scheme for Gob-side Entry Retaining in 18205 Face of Tunlan Mine[J]. Safety in Coal Mines, 2013, 44(6): 79-81.

Catalog

    Article views (225) PDF downloads (0) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return