• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
LI Jiangtao. Relationship Between Organic Carbon Isotope Characteristics and Maturity in Xishan Coalfield[J]. Safety in Coal Mines, 2018, 49(11): 164-167.
Citation: LI Jiangtao. Relationship Between Organic Carbon Isotope Characteristics and Maturity in Xishan Coalfield[J]. Safety in Coal Mines, 2018, 49(11): 164-167.

Relationship Between Organic Carbon Isotope Characteristics and Maturity in Xishan Coalfield

More Information
  • Published Date: November 19, 2018
  • This paper analyzes the organic carbon isotope abundance of 19 coal samples from 7 coal seams in Tunlan coalmine, Xishan coalfield, and studies the distribution characteristics and changing trend of carbon isotope value (δ13Corg) among various coal seams. The research results show that δ13Corg values in Tunlan coal range from -25.6‰ to -23.3‰, with an average value of -24.3‰. The δ13C values of 9 coal to 02 coal (from bottom to top) showed a generally positive trend, with only 7 coal showing a negative trend. The increase of δ13Corg in coal may be influenced by the temperature rise in the Permian North China region. With the increase of maturity, the δ13Corg-Rmax correlation curves of different coal seams show a certain positive correlation. The polynomial regression function model was used to determine the relationship between δ13Corg-Rmax.
  • [1]
    刘卫国,宁有丰,安芷生,等.黄土高原现代土壤和古土壤有机碳同位素对植被的响应[J].中国科学:D辑,2002,32(10):830-836.
    [2]
    杨桂芳,黄俊华,谢树成,等.天目山泥炭有机碳同位素特征及其古环境意义[J].地球学报,2008,29(6):778-782.
    [3]
    于贵瑞,王绍强,陈泮勤,等.碳同位素技术在土壤碳循环研究中的应用[J].地球科学进展,2005,20(5):568-577.
    [4]
    曹建廷,王苏民,沈吉,等.近千年来内蒙古岱海气候环境演变的湖泊沉积记录[J].地理科学,2000,20(5):391-396.
    [5]
    刘禹,马利民,蔡秋芳,等.采用树轮稳定碳同位素重建贺兰山1890年以来夏季(6-8月)气温[J].中国科学:D辑,2002,32(8):667-674.
    [6]
    曹长群,王伟,金玉.浙江煤山二叠-三叠系界线附近碳同位素变化[J].科学通报,2002,47(4):302-306.
    [7]
    南郡亚,刘育燕.浙江煤山二叠-三叠系界线剖面有机和无机碳同位素变化与古环境[J].地球化学,2004, 33(1):9-18.
    [8]
    黄俊华,罗根明,白晓,等.浙江煤山P-T之交碳同位素对有机碳埋藏的指示意义[J].地球科学,2007,32(6):767-773.
    [9]
    郄文昆,张雄华,杜远生,等.华南地区下石炭亚系碳同位素记录及对晚古生代冰期的响应[J].中国科学:地球科学,2010,40(11):1533-1542.
    [10]
    王伟,陈孝政,刘欣春,等.海相碳酸盐岩碳同位素地层学研究中存在的问题及建议-以二叠系研究为例[J].地层学杂志,2011,35(3):305-320.
    [11]
    Zhang H, Shen G L, He Z L. A carbon isotopic stratigraphic pattern of the Late Palaeozoic coals in the North China Platform and its palaeoclimatic implications[J]. Acta Geologica Sinica(English Edition), 1999, 73(1): 111-119.
    [12]
    汪浩.滇东、黔西晚二叠世煤的沉积学特征及古环境意义[D].北京:中国矿业大学(北京),2011.
    [13]
    孙晓辉,陈健,吴盾,等.淮南煤田张集煤矿煤层中稳定有机碳同位素分布特征[J].中国煤炭地质,2013, 25(4):7-17.
    [14]
    鲁静,邵龙义,王占刚,等.柴北缘侏罗纪煤层有机碳同位素组成与古气候[J].中国矿业大学学报,2014, 43(4):612-618.
    [15]
    陈旭,阮亦萍,A J 布科.中国古生代气候演变[M].北京:科学出版社,2001.
    [16]
    Lücke A, Helle G, Schleser G H, et al.Environmental history of the German Lower Rhine Embayment during the Middle Miocene as reflected by carbon isotopes in brown coal[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1999, 154(4): 339-352.
    [17]
    Bechtel A,Gruber W,Sachsenhofer R F, et al.Depositional environment of the Late Miocene Hausruck lignite(Alpine Foreland Basin) : insights from petrography, organic geochemistry, and stable carbon isotopes[J]. International Journal of Coal Geology, 2003, 53(3): 153-180.
    [18]
    Tuo J C, Wang X B, Chen J F,et al.Aliphatic and diterpenoid hydrocarbons and their individual carbon isotope compositions in coals from the Liaohe Basin,China [J]. Organic Geochemistry,2003, 34(12): 1615.
    [19]
    Schwarzbauer J, Littke R, Meier R,et al.Stable carbon isotope ratios of aliphatic biomarkers in Late Paleozoic coals[J]. International Journal of Coal Geology, 2013, 107(107): 127-140.
    [20]
    Cooper J, Crelling J, Rimmer S M, et al.Coal metamorphism by igneous intrusion in the Raton Basin, CO and NM: Implications for generation of volatiles[J]. International Journal of Coal Geology, 2007, 71(1): 15-27.
  • Related Articles

    [1]HOU Zhicheng. A Fully Mechanized Mining Method for Top Layer of Ultra-thick Coal Seam Without False Roof in Shallow Buried Depth[J]. Safety in Coal Mines, 2018, 49(S1): 102-104,109.
    [2]CHI Guoming, ZHANG Lihui, LI Bin. Technique of Low Oxygen Control in Corner of Fully Mechanized Mining Face of Shallow Buried Depth Close Coal Seams[J]. Safety in Coal Mines, 2018, 49(S1): 22-26.
    [3]LYU Zhijin, OUYANG Hui. Distribution of “Three Zones” in Goaf of the First Mining Face with Shallow Buried Depth[J]. Safety in Coal Mines, 2018, 49(9): 238-241.
    [4]CHANG Wei, JI Chunxu, YANG Yongkang, KANG Tianhe, HOU Yongpeng. Buried Depth Effect of Pressure Characteristics of Fully-mechanized Caving Stope in Super High Seam[J]. Safety in Coal Mines, 2017, 48(7): 220-223.
    [5]REN Feipeng, GUAN Furong. Surrounding Rock Activities Laws Under Composite Key Layer of Overlying Thick Bedrocks in Shallow Buried Deep Coal Seams[J]. Safety in Coal Mines, 2016, 47(10): 191-193,197.
    [6]WANG Xin, WU Yuechao, TAN Yingming, NIU Qinhuan, LU Jingzheng. Accidents Analysis and Prevention Technology for Crushing Supports at Fully Mechanized Caving Face in Shallow Buried Depth and Supper Thick Coal Seam[J]. Safety in Coal Mines, 2016, 47(8): 205-207,211.
    [7]KANG Jizhong, SHEN Wenlong, WANG Ruofan, BAI Yu. Influence of Burial Depth on Stability of Close Coal Roadway Under Residual Coal Pillar[J]. Safety in Coal Mines, 2016, 47(3): 187-189,193.
    [8]ZHANG Shiqing, ZHAO Jianjian, LIU Jinkai, ZHANG Chunlei, LI Qi, MA Yue. Strata Behavior Law of Medium Thick Coal Seam with Shallow Depth of Thin Bedrock[J]. Safety in Coal Mines, 2014, 45(7): 192-194,197.
    [9]CUI An-yi. The Variation Characteristics of Bearing Arch Before and After Roof Breaking in Shallow Buried Depth and Thin Bedrock Coal Seam[J]. Safety in Coal Mines, 2012, 43(7): 210-212,216.
    [10]WEI Rui, MA Zhen, ZHANG Liang, ZOU Yong-ming. The Influence of Hard Clay Layer on Strata Behavior of Fully-Mechanized Top Coal Caving Face in Thin Bedrock[J]. Safety in Coal Mines, 2012, 43(2): 147-150.
  • Cited by

    Periodical cited type(2)

    1. 杨红红. 煤体变质程度对突出煤体吸附/解吸影响. 当代化工研究. 2022(13): 13-15 .
    2. 蒋承林,俞启香,张超杰. 煤巷突出预测敏感指标及临界值的实验室测定方法及应用. 煤矿安全. 2021(10): 24-29 . 本站查看

    Other cited types(0)

Catalog

    Article views (133) PDF downloads (0) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return