• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
ZHANG Hongxue, YAO Weifen. Key Position of Failure of Trapezoidal Metal Support[J]. Safety in Coal Mines, 2018, 49(7): 185-187,188.
Citation: ZHANG Hongxue, YAO Weifen. Key Position of Failure of Trapezoidal Metal Support[J]. Safety in Coal Mines, 2018, 49(7): 185-187,188.

Key Position of Failure of Trapezoidal Metal Support

More Information
  • Published Date: July 19, 2018
  • In order to analyze key position of deformation of trapezoidal metal support, the mechanical models of trapezoidal metal support are established based on universal pressure theory and principle of force law. And then, the analytical solutions of key position of deformation of trapezoidal metal support are deduced. Furthermore, the strength of key position of deformation of different types of mine steel brackets is analyzed. The effects of the inclination of shed column and the internal friction angle of rock on the key position are discussed. It is studied that the key part deformation of different types of mine trapezoidal steel beams are all at mid-span cross-section of canopy beams, and there are not relevant to the loads, bottom width of caving arch and the internal friction angle of rock. The key position of shed column relates to the size of roadway section, bottom width of caving arch, the dip angle of shed column and the internal friction angle of rock, and it lies between 0.55 m to 0.63 m from roadway floor. With the increase of the angle of the shed column, the key part of the column deformation is farther away from the roadway floor, and with the increase of internal friction angle, the key part of the deformation of the shed column is closer to the bottom of the roadway.
  • [1]
    尤春安.巷道金属支架的计算理论[M].北京:煤炭工业出版社,2000:10-12.
    [2]
    张宏学,张继华,姚卫粉,等.棚索协同支护锚索间距理论研究与应用[J].采矿与安全工程学报,2014,31(4):593-600.
    [3]
    张宏学,姚卫粉,王运臣.深部软岩巷道U型钢支架承载能力增强技术[J].煤炭科学技术,2013,41(5):39.
    [4]
    涂敏,张秀坤.松散破碎围岩巷道支架受力分析[J].矿山压力与顶板管理,1996(3):42-44.
    [5]
    王国际,顿志林,白云峰,等.矿工钢梯形双向可缩性支架的受力分析与设计计算[J].焦作矿业学院学报,1992(4):44-54.
    [6]
    何富连,张亮杰,来永辉,等.梯形巷道支护结构耦合控制与稳定性分析[J].煤矿安全,2016,47(6):230.
    [7]
    李跃文.煤层群沿断层工作面回采巷道破坏机理及控制技术[J].煤矿安全,2017,48(2):97-100.
    [8]
    谢文兵,荆升国,王涛,等.U型钢支架结构稳定性及其控制技术[J].岩石力学与工程学报,2010,29(S2):3743-3748.
    [9]
    王运臣,王波,张宏学.高应力软岩巷道U型钢支架的结构稳定性及应用分析[J].矿业安全与环保,2015, 42(5):76-80.
    [10]
    姜耀东,王宏伟,赵毅鑫,等.极软岩回采巷道互补控制支护技术研究[J].岩石力学与工程学报,2009,28(12):2383-2390.
    [11]
    孙晓明,何满潮,杨晓杰.深部软岩巷道锚网索耦合支护非线性设计方法研究[J].岩土力学,2006,27(7):1061-1065.
  • Related Articles

    [1]WANG Yanhui, DANG Chongzhe. Discrete element study on influence of heterogeneous structure on strength and failure characteristics of coal rock combination[J]. Safety in Coal Mines, 2023, 54(3): 147-152.
    [2]GUO Yan. Failure mechanism and fracture development law of heterogeneous brittle rock[J]. Safety in Coal Mines, 2022, 53(5): 67-72,80.
    [3]Evolution characteristics of cracks and strain energy during progressive failure of coal and rock masses around the hole[J]. Safety in Coal Mines, 2022, 53(3): 16-23.
    [4]WANG Huifeng, SONG Libing. Study on Deformation and Failure Laws of Surrounding Rock in Layered Rock Roadway by Discrete Element Method[J]. Safety in Coal Mines, 2020, 51(12): 56-62.
    [5]HE Tao, WANG Li. Research on Damage Evolution Laws of Rock-coal-rock Combination Based on Particle Discrete Element Model[J]. Safety in Coal Mines, 2018, 49(7): 205-208.
    [6]ZHENG Wei. Calculation of Floor Mining Failure Depth and Failure Characteristics Analysis of Inclined Coal Seam[J]. Safety in Coal Mines, 2017, 48(10): 195-198.
    [7]JI Guoqing, LI Yingming. Torsion Failure of Glass Fiber Reinforced Plastic Bolt in Coal Rock Mass[J]. Safety in Coal Mines, 2016, 47(7): 227-229,233.
    [8]LI Xiaolu. Numerical Simulation Research on Impact Failure Characteristics for Unloading Coal Rock Mass[J]. Safety in Coal Mines, 2015, 46(6): 43-45.
    [9]WANG Luyu, ZANG Chuanwei, WANG Zeqin, CHEN jie. A Critical Depth Calculation Model and Instability Mechanism Analysis for Roadway[J]. Safety in Coal Mines, 2015, 46(5): 220-222,226.
    [10]GU Shuancheng, WANG Enbo, SHI Xiangdong. Spandrel Failure Mechanism Analysis of Arched Roadway in Layered Rock Mass[J]. Safety in Coal Mines, 2014, 45(11): 172-175,179.
  • Cited by

    Periodical cited type(12)

    1. 韩金明,郭世豪,杨磊. 套筒交替压裂作用下岩石力学特性模拟研究. 山东煤炭科技. 2024(04): 140-145 .
    2. 康晓峰. 特厚坚硬煤层深浅交替钻孔水力压裂弱化顶煤技术研究. 煤炭工程. 2023(03): 19-24 .
    3. 许晋斌. 坚硬顶板水力压裂超前切顶护巷技术应用研究. 煤炭技术. 2023(07): 50-56 .
    4. 陈冬冬. 采动影响下邻空定向钻孔整体水力压裂瓦斯抽采技术. 煤矿安全. 2023(07): 123-129 . 本站查看
    5. 曹军,赵明,高龙. 布尔台煤矿坚硬顶板定向长钻孔水力压裂研究. 中国煤炭. 2023(S2): 164-170 .
    6. 牛同会. 分段水力压裂弱化采场坚硬顶板围岩控制技术研究. 煤炭科学技术. 2022(08): 50-59 .
    7. 冯世鼎. 佳峰煤矿坚硬顶板劣化卸压技术研究. 煤. 2021(06): 89-91 .
    8. 范常胜. 佳峰煤矿隅角顶板强制放顶技术研究. 山东煤炭科技. 2021(07): 64-66 .
    9. 高亮,张农,吕情绪. 顶板定向钻孔水压致裂工作面强矿压控制试验研究. 煤炭科学技术. 2020(08): 57-62 .
    10. 马伟. 煤矿井下工作面坚硬顶板弱化技术研究. 江西煤炭科技. 2020(04): 32-35 .
    11. 王文斌. 定向水力致裂技术在坚硬顶板弱化控制中的应用. 山东煤炭科技. 2020(11): 168-170 .
    12. 柳建琦. 大高采工作面坚硬顶板水压致裂数值模拟标准研究. 中国石油和化工标准与质量. 2019(16): 8-9 .

    Other cited types(5)

Catalog

    Article views (171) PDF downloads (0) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return