• Chinese Core Periodicals
  • Chinese Core Journals of Science and Technology
  • RCCSE Chinese Authoritative Academic Journals
ZHANG Jinbao. Optimization Analysis of Coal Particles Passing Performance of Gas Extraction Screen Pipe Based on Discrete Element Method[J]. Safety in Coal Mines, 2018, 49(7): 154-158.
Citation: ZHANG Jinbao. Optimization Analysis of Coal Particles Passing Performance of Gas Extraction Screen Pipe Based on Discrete Element Method[J]. Safety in Coal Mines, 2018, 49(7): 154-158.

Optimization Analysis of Coal Particles Passing Performance of Gas Extraction Screen Pipe Based on Discrete Element Method

More Information
  • Published Date: July 19, 2018
  • In order to analyze the passing performance of the conventional round-hole screen pipes and the slotted screen pipes, this paper built the particle flow model of the conventional round-hole screen pipes and the slotted screen pipes with PFC3D software on the basis of discrete element method, matched the particle flow simulation parameters by natural rest angle simulation test combined with the laboratory test results of coal particles, and analyzed the influence of parameters, including the screen mesh diameter, the width of the slotting and the length of the slotting on the ability of coal particles passing through screen pipe by simulating the coal particles volume passing through screen pipe. The results show that the volume of the coal particles passing through the screen tube increases with the increase of the diameter of the screen, the width of the slotting and the length of the slotting, and the volume of the particles under the equivalent overflow area is linearly dependent on the diameter of the screen, the width of the slotting and the length of the slotting. However, in the same overflow area, the passed particle volume of the slotted screen pipe is far smaller than the round-hole screen pipe, and the volume of the conventional round-hole screen pipe of φ10 mm can reach 33 times that of the 2 mm × 30 mm slotted screen pipe.
  • [1]
    边小雷,侯亚娟,赵梅,等.离散元法及其在颗粒粉碎领域的应用现状[J].矿山机械,2015(6):62-67.
    [2]
    P A Cundall. A computer model for simulating progressive large scale movements in blocky system[C]//Muller Led. Proceedings of Symposium of the International Society of Rock Mechanics. Rotterdam: A. A. Balkema, 1971(1): 8-12.
    [3]
    P A Cundall, O.D.L. Strack. A discrete numerical method for granular assemblies[J]. Geotechnique, 1979, 29(1):47-65.
    [4]
    O D L Strack, P A Cundall.The distinct element method as a tool for research in granular media[R]. Minnesota: University of Minnesota, 1978.
    [6]
    Oda M, Iwashita K.Mechanics of granular materials: an introduction[M]. A.A. Balkema: Taylor & Francis, 1999:147-223.
    [7]
    徐泳,孙其诚,张凌,等.颗粒离散元法研究进展[J].力学进展,2003,33(2):251-260.
    [8]
    Zhu H P, Zhou Z Y, Yang R Y, et al. Discrete particle simulation of particulate systems: A review of major applications and findings[J]. Chemical Engineering Science, 2008, 63(23): 5728-5770.
    [9]
    曹文,李维朝,唐斌,等.PFC滑坡模拟二、三维建模方法研究[J].工程地质学报,2017,25(2):455-462.
    [10]
    田瑞霞,焦红光.离散元软件PFC在矿业工程中的应用现状及分析[J].矿冶,2011,20(1):79-82.
    [11]
    P A Cundall, O D L Strack.Particle flow code in 3 dimensions[M]. Minnesota: Itasca Consulting Group, 2008: 1-17.
    [12]
    金新.两淮矿区复杂煤矿瓦斯抽采PVC筛管完孔技术研究[D].成都:成都理工大学,2017.
    [13]
    王力.煤矿井下瓦斯抽采孔完孔筛管研究与强度分析[J].煤矿安全,2016,47(4):43-47.
    [14]
    苏海洋,申瑞臣,付利,等.煤层气水平井塑料割缝筛管有限元分析与参数优化[J].中国煤层气,2012,9(3)30-34.
    [15]
    王同涛,闫相祯,杨秀娟.基于塑性铰模型的煤层气完井筛管抗挤强度分析[J].煤炭学报,2010,35(2):273.
    [16]
    付利,申瑞臣,苏海洋,等.煤层气水平井完井用塑料筛管优化设计[J].石油机械,2012,40(8):47-51.
    [17]
    黄中伟,李根生,王开龙,等.基于离散单元法的筛管内煤灰颗粒通过性分析[J].煤炭学报,2012,37(12):2083-2086.
    [18]
    张金宝.基于离散元法的煤矿井下护孔筛管防堵性颗粒流分析[J].煤矿安全,2017,48(10):178-181.
    [19]
    季宪军,欧国强,杨顺,等.基于PFC3D黏性与无黏崩滑土体运动过程对比分析[J].工程科学与技术,2013, 45(S1):67-73.
  • Related Articles

    [1]WANG Yanhui, DANG Chongzhe. Discrete element study on influence of heterogeneous structure on strength and failure characteristics of coal rock combination[J]. Safety in Coal Mines, 2023, 54(3): 147-152.
    [2]GUO Yan. Failure mechanism and fracture development law of heterogeneous brittle rock[J]. Safety in Coal Mines, 2022, 53(5): 67-72,80.
    [3]Evolution characteristics of cracks and strain energy during progressive failure of coal and rock masses around the hole[J]. Safety in Coal Mines, 2022, 53(3): 16-23.
    [4]WANG Huifeng, SONG Libing. Study on Deformation and Failure Laws of Surrounding Rock in Layered Rock Roadway by Discrete Element Method[J]. Safety in Coal Mines, 2020, 51(12): 56-62.
    [5]HE Tao, WANG Li. Research on Damage Evolution Laws of Rock-coal-rock Combination Based on Particle Discrete Element Model[J]. Safety in Coal Mines, 2018, 49(7): 205-208.
    [6]ZHENG Wei. Calculation of Floor Mining Failure Depth and Failure Characteristics Analysis of Inclined Coal Seam[J]. Safety in Coal Mines, 2017, 48(10): 195-198.
    [7]JI Guoqing, LI Yingming. Torsion Failure of Glass Fiber Reinforced Plastic Bolt in Coal Rock Mass[J]. Safety in Coal Mines, 2016, 47(7): 227-229,233.
    [8]LI Xiaolu. Numerical Simulation Research on Impact Failure Characteristics for Unloading Coal Rock Mass[J]. Safety in Coal Mines, 2015, 46(6): 43-45.
    [9]WANG Luyu, ZANG Chuanwei, WANG Zeqin, CHEN jie. A Critical Depth Calculation Model and Instability Mechanism Analysis for Roadway[J]. Safety in Coal Mines, 2015, 46(5): 220-222,226.
    [10]GU Shuancheng, WANG Enbo, SHI Xiangdong. Spandrel Failure Mechanism Analysis of Arched Roadway in Layered Rock Mass[J]. Safety in Coal Mines, 2014, 45(11): 172-175,179.
  • Cited by

    Periodical cited type(12)

    1. 韩金明,郭世豪,杨磊. 套筒交替压裂作用下岩石力学特性模拟研究. 山东煤炭科技. 2024(04): 140-145 .
    2. 康晓峰. 特厚坚硬煤层深浅交替钻孔水力压裂弱化顶煤技术研究. 煤炭工程. 2023(03): 19-24 .
    3. 许晋斌. 坚硬顶板水力压裂超前切顶护巷技术应用研究. 煤炭技术. 2023(07): 50-56 .
    4. 陈冬冬. 采动影响下邻空定向钻孔整体水力压裂瓦斯抽采技术. 煤矿安全. 2023(07): 123-129 . 本站查看
    5. 曹军,赵明,高龙. 布尔台煤矿坚硬顶板定向长钻孔水力压裂研究. 中国煤炭. 2023(S2): 164-170 .
    6. 牛同会. 分段水力压裂弱化采场坚硬顶板围岩控制技术研究. 煤炭科学技术. 2022(08): 50-59 .
    7. 冯世鼎. 佳峰煤矿坚硬顶板劣化卸压技术研究. 煤. 2021(06): 89-91 .
    8. 范常胜. 佳峰煤矿隅角顶板强制放顶技术研究. 山东煤炭科技. 2021(07): 64-66 .
    9. 高亮,张农,吕情绪. 顶板定向钻孔水压致裂工作面强矿压控制试验研究. 煤炭科学技术. 2020(08): 57-62 .
    10. 马伟. 煤矿井下工作面坚硬顶板弱化技术研究. 江西煤炭科技. 2020(04): 32-35 .
    11. 王文斌. 定向水力致裂技术在坚硬顶板弱化控制中的应用. 山东煤炭科技. 2020(11): 168-170 .
    12. 柳建琦. 大高采工作面坚硬顶板水压致裂数值模拟标准研究. 中国石油和化工标准与质量. 2019(16): 8-9 .

    Other cited types(5)

Catalog

    Article views (199) PDF downloads (0) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return